Skip to main content
Log in

Contribution of CuxO distribution, shape and ratio on TiO2 nanotubes to improve methanol production from CO2 photoelectroreduction

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Many studies are focused on the development of materials for converting carbon dioxide into multicarbon oxygenates such as methanol and ethanol, because of their higher energy density and wider applicability. In this work, TiO2 nanotubes (NT/TiO2) were modified with CuxO nanoparticles in order to investigate the contribution of different ratio of Cu2O/CuO and its distribution over NT/TiO2 for CO2 photoelectro-conversion to methanol. The photoelectrodes were built by anodization process to obtain NT/TiO2 layer, and the decoration with CuxO hybrid system was carried out by electrodeposition process, using Na2SO4 or acid lactic as electrolyte, followed by annealing at different temperatures. X-ray photoelectron spectroscopy analysis revealed the predominance of Cu+1 and Cu+2 at 150 °C and 300 °C, respectively. X-ray diffraction and scanning electron microscopy indicated that under lactic acid solution, the oxide nanoparticles exhibited small size, cubic shape, and uniform distribution on the nanotube wall. While under Na2SO4 electrolyte, large nanoparticles with two different morphologies, octahedral and cubic shapes, were deposited on the top of the nanotubes. All modified electrodes converted CO2 in methanol in different quantities, identified by gas chromatograph. However, the NT/TiO2 modified with CuO/Cu2O (80:20) nanoparticles using lactic acid as electrolyte showed better performance in the CO2 reduction to methanol (0.11 mmol L−1) in relation to the other electrodes. In all cases, a blend among the structures and nanoparticle morphologies were achieved and essential to create new site of reactions what improved the use of light irradiation, minimization of charge recombination rate and promoted high selectivity of products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Gao D, Arán-Ais RM, Jeon HS, Roldan Cuenya B (2019) Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat Catal 2(3):198–210

  2. Whipple DT, Kenis PJA (2010) Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J Phys Chem Lett 1(24):3451–3458

    CAS  Google Scholar 

  3. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chemie - Int Ed 52(29):7372–7408

  4. White JL, Baruch MF, Pander JE et al (2015) Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and Photoelectrodes. Chem Rev 115(23):12888–12935

    CAS  PubMed  Google Scholar 

  5. Ping G, Wang C, Chen D, Liu S, Huang X, Qin L, Huang Y, Shu K (2013) Fabrication of self-organized TiO2 nanotube arrays for photocatalytic reduction of CO2. J Solid State Electrochem 17(9):2503–2510

  6. Macak JM, Gong BG, Hueppe M, Schmuki P (2007) Filling of TiO2 nanotubes by self-doping and electrodeposition. Adv Mater 19(19):3027–3031

    CAS  Google Scholar 

  7. Kim HR, Razzaq A, Grimes CA, In S Il (2017) Heterojunction p-n-p Cu2O/S-TiO2/CuO: synthesis and application to photocatalytic conversion of CO2 to methane. J CO2 Util 20:91–96

  8. Henderson MA (2011) A surface science perspective on TiO2 photocatalysis. Surf Sci Rep 66(6-7):185–297

    CAS  Google Scholar 

  9. Fujishima A, Rao TN, Tryk D a. (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev 1(1):1–21

    CAS  Google Scholar 

  10. Anitha VC, Goswami A, Sopha H et al (2018) Pt nanoparticles decorated TiO2 nanotubes for the reduction of olefins. Appl Mater Today 10:86–92

    Google Scholar 

  11. Castelhano DI, de Almeida J, de Paiva Pinheiro CH, Bertazzoli R, de Arruda Rodrigues C (2018) Array of electrodeposited Ru-decorated TiO2 nanotubes with enhanced photoresponse. J Solid State Electrochem 22(8):2445–2455

    CAS  Google Scholar 

  12. Mazare A, Liu N, Lee K, Killian MS, Schmuki P (2013) Embedded palladium activation as a facile method for TiO2-nanotube nanoparticle decoration: Cu2O-induced visible-light Photoactivity. ChemistryOpen 2(1):21–24

  13. Wang C, Jiang F, Yue R, Wang H, du Y (2014) Enhanced photo-electrocatalytic performance of Pt/RGO/TiO2 on carbon fiber towards methanol oxidation in alkaline media. J Solid State Electrochem 18(2):515–522

    CAS  Google Scholar 

  14. Gonell F, Puga AV, Julián-López B, García H, Corma A (2016) Copper-doped titania photocatalysts for simultaneous reduction of CO2 and production of H2 from aqueous sulfide. Appl Catal B Environ 180:263–270

    CAS  Google Scholar 

  15. Zhu S, Shao M (2015) Surface structure and composition effects on electrochemical reduction of carbon dioxide. J Solid State Electrochem 20:861–873

    Google Scholar 

  16. Subramanian V, Wolf E, Kamat PV (2001) Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J Phys Chem B 105(46):11439–11446

    CAS  Google Scholar 

  17. Tseng I, Chang W, Wu JCS (2002) Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Appl Catal B Environ 37(1):37–48

    CAS  Google Scholar 

  18. Mor GK, Varghese OK, Wilke RHT, Sharma S, Shankar K, Latempa TJ, Choi KS, Grimes CA (2008) p-type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Lett 8(7):1906–1911

    CAS  PubMed  Google Scholar 

  19. Won DH, Choi CH, Chung J, Woo SI (2014) Photoelectrochemical production of formic acid and methanol from carbon dioxide on metal-decorated CuO/Cu2O-layered thin films under visible light irradiation. Appl Catal B Environ 158–159:217–223

    Google Scholar 

  20. Nerle U, Rabinal MK (2013) Thermal Oxidation of Copper for Favorable Formation of Cupric Oxide (CuO) Semiconductor 5:1–7

    Google Scholar 

  21. Leng M, Liu M, Zhang Y, Wang Z, Yu C, Yang X, Zhang H, Wang C (2010) Polyhedral 50-facet Cu2O microcrystals partially enclosed by {311} high-index planes: synthesis and enhanced catalytic CO oxidation activity. J Am Chem Soc 132(48):17084–17087

    CAS  PubMed  Google Scholar 

  22. Lashgari M, Soodi S, Zeinalkhani P (2017) Photocatalytic back-conversion of CO2 into oxygenate fuels using an ef fi cient ZnO/CuO/carbon nanotube solar-energy-material. Artif Photosynth 18:89–97

    CAS  Google Scholar 

  23. Slamet H, Nasution HW, Purnama E et al (2009) Effect of copper species in a photocatalytic synthesis of methanol from carbon dioxide over copper-doped titania catalysts. World Appl Sci J 6:112–122

    CAS  Google Scholar 

  24. Uzunova EL, Seriani N, Mikosch H (2015) CO2 conversion to methanol on cu(i) oxide nanolayers and clusters: an electronic structure insight into the reaction mechanism. Phys Chem Chem Phys 17(16):11088–11094

    CAS  PubMed  Google Scholar 

  25. Wang Q, Qiao J, Xu X, Gao S (2014) Controlled synthesis of cu nanoparticles on TiO2 nanotube array photoelectrodes and their photoelectrochemical properties. Mater Lett 131:135–137

    CAS  Google Scholar 

  26. Park SM, Razzaq A, Park YH, Sorcar S, Park Y, Grimes CA, in SI (2016) Hybrid CuxO-TiO2 Heterostructured composites for Photocatalytic CO2 reduction into methane using solar irradiation: sunlight into fuel. ACS Omega 1(5):868–875

  27. Wang J, Ji G, Liu Y, Gondal MA, Chang X (2014) Cu2O/TiO2 heterostructure nanotube arrays prepared by an electrodeposition method exhibiting enhanced photocatalytic activity for CO2 reduction to methanol. Catal Commun 46:17–21

    CAS  Google Scholar 

  28. Brito JF de, Hudari FF, Zanoni MVB (2018) Photoelectrocatalytic performance of nanostructured p-n junction NtTiO2/NsCuO electrode in the selective conversion of CO2 to methanol at low bias potentials. J CO2 Util 24:81–88

  29. Janczarek M, Kowalska E (2017) On the origin of enhanced photocatalytic activity of copper-modified titania in the oxidative reaction systems. Catalysts 7(11):7. https://doi.org/10.3390/catal7110317

    Article  CAS  Google Scholar 

  30. Zhang L, Cao H, Lu Y, Zhang H, Hou G, Tang Y, Zheng G (2020) High-efficiency and sustainable photoelectric conversion of CO2 to methanol over CuxO/TNTs catalyst by pulse potential method. J Solid State Electrochem 24(2):447–459

    CAS  Google Scholar 

  31. Yu M, Long YZ, Sun B, Fan Z (2012) Recent advances in solar cells based on one-dimensional nanostructure arrays. Nanoscale 4(9):2783–2796

    CAS  PubMed  Google Scholar 

  32. Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42(6):2294–2320

    CAS  PubMed  Google Scholar 

  33. Huang Y, Handoko AD, Hirunsit P, Yeo BS (2017) Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO coverage on the selective formation of ethylene. ACS Catal 7(3):1749–1756

    CAS  Google Scholar 

  34. Hori Y, Takahashi I, Koga O, Hoshi N (2002) Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J Phys Chem B 106(1):15–17

    CAS  Google Scholar 

  35. Durand WJ, Peterson AA, Studt F, Abild-Pedersen F, Nørskov JK (2011) Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surf Sci 605(15-16):1354–1359

    CAS  Google Scholar 

  36. Huang L, Peng F, Wang H, Yu H, Li Z (2009) Preparation and characterization of Cu2O/TiO2 nano-nano heterostructure photocatalysts. Catal Commun 10(14):1839–1843

    CAS  Google Scholar 

  37. de Brito JF, Araujo AR, Rajeshwar K, Zanoni MVB (2015) Photoelectrochemical reduction of CO2 on cu/Cu2O films: product distribution and pH effects. Chem Eng J 264:302–309. https://doi.org/10.1016/j.cej.2014.11.081

    Article  CAS  Google Scholar 

  38. Rosario AV, Santos MC, Mascaro LH et al (2010) Copper underpotential deposition on TiO2 electrodes: a voltammetric and electrochemical quartz crystal nanobalance study. Thin Solid Films 518(10):2669–2673

    CAS  Google Scholar 

  39. Yasuda K, Macak JM, Berger S, Ghicov A, Schmuki P (2007) Mechanistic aspects of the self-organization process for oxide nanotube formation on valve metals. J Electrochem Soc 154(9):C472–C478

    CAS  Google Scholar 

  40. Bessegato GG, Hudari FF, Zanoni MVB (2017) Self-doped TiO2 nanotube electrodes: a powerful tool as a sensor platform for electroanalytical applications. Electrochim Acta 235:527–533

    CAS  Google Scholar 

  41. Poznyak SK, Pergushov VI, Kokorin a I, et al (1999) Structure and electrochemical properties of species formed as a result of cu(II) ion adsorption onto TiO2 nanoparticles. J Phys Chem B 103:1308–1315, 8

  42. Grujicic D, Pesic B (2002) Electrodeposition of copper: the nucleation mechanisms. Electrochim Acta 47(18):2901–2912

    CAS  Google Scholar 

  43. Chen QS, Solla-Gullón J, Sun SG, Feliu JM (2010) The potential of zero total charge of Pt nanoparticles and polycrystalline electrodes with different surface structure: the role of anion adsorption in fundamental electrocatalysis. Electrochim Acta 55(27):7982–7994

    CAS  Google Scholar 

  44. Sato N (1998) Electrochemistry at metal and semiconductor electrodes

  45. Foo WJ, Wei G (2013) Non-noble metal cu-loaded TiO2 for enhanced photocatalytic H2 production. 2:759–764

  46. Kim DK, Ho Shin J, Sun Shin H, Yong Song J (2013) Single-crystalline CuO nanowire growth and its electrode-dependent resistive switching characteristics. J Appl Phys 114(4):043514. https://doi.org/10.1063/1.4816794

    Article  CAS  Google Scholar 

  47. Li G, Liang W, Xue J, Liu Y, Liang X (2014) Electrochemical preparation and photoelectric properties of Cu2O-loaded TiO2 nanotube arrays. J Wuhan Univ Technol Sci Ed 29(1):23–28

    Google Scholar 

  48. Lai CW, Sreekantan S (2012) Visible light photoelectrochemical response of copper deposited titanium dioxide nanotubes. Eur Phys J Appl Phys 59(2):20402

    Google Scholar 

  49. Sathasivam S, Bhachu DS, Lu Y et al (2015) Tungsten doped TiO2 with enhanced photocatalytic and optoelectrical properties via aerosol assisted chemical vapor deposition. Sci Rep 5:1–10

    Google Scholar 

  50. Silva Junior E, La Porta FA, Liu MS et al (2015) A relationship between structural and electronic order-disorder effects and optical properties in crystalline TiO2 nanomaterials. Dalton Trans 44(7):3159–3175

    CAS  PubMed  Google Scholar 

  51. Huang X, Liu Z (2013) Heterogeneous deposition of Cu2O nanoparticles on TiO2 nanotube Array films in organic solvent. J Nanomater 2013. https://doi.org/10.1155/2013/517648, 2013, 1, 8

  52. Guaraldo TT, de Brito JF, Wood D, Zanoni MVB (2015) A new Si/TiO2/Pt p-n junction semiconductor to demonstrate photoelectrochemical CO2 conversion. Electrochim Acta 185:117–124

    CAS  Google Scholar 

  53. Almeida LC, Zanoni MVB (2014) Decoration of Ti/TiO2 nanotubes with Pt nanoparticles for enhanced UV-Vis light absorption in Photoelectrocatalytic process. 25:579–588

  54. Min S, Wang F, Jin Z, Xu J (2014) Cu2O nanoparticles decorated BiVO4 as an effective visible-light-driven p-n heterojunction photocatalyst for methylene blue degradation. Superlattice Microst 74:294–307

    CAS  Google Scholar 

  55. Wang P, Wen X, Amal R, Ng YH (2015) Introducing a protective interlayer of TiO2 in Cu2O–CuO heterojunction thin film as a highly stable visible light photocathode. RSC Adv 5(7):5231–5236

    CAS  Google Scholar 

  56. Wagner CD, Riggs WM, Davis LE, et al (1979) Handbook of X ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data, First Edit. Perkin-Elmer Corporation Physical Electonics Division, Eden Praire, Minnesota

  57. Qiu X, Miyauchi M, Sunada K, Minoshima M, Liu M, Lu Y, Li D, Shimodaira Y, Hosogi Y, Kuroda Y, Hashimoto K (2012) Hybrid CuxO/TiO2 nanocomposites as risk -reduction materials in indoor environments. ACS Nano 6(2):1609–1618

    CAS  PubMed  Google Scholar 

  58. Rajeshwar K, Hossain MK, Macaluso RT, Janáky C, Varga A, Kulesza PJ (2018) Review—copper oxide-based ternary and quaternary oxides: where solid-state chemistry meets photoelectrochemistry. J Electrochem Soc 165(4):H3192–H3206

    CAS  Google Scholar 

  59. Huang L, Zhang S, Peng F, Wang H, Yu H, Yang J, Zhang S, Zhao H (2010) Electrodeposition preparation of octahedral-Cu2O-loaded TiO2 nanotube arrays for visible light-driven photocatalysis. Scr Mater 63(2):159–161

    CAS  Google Scholar 

  60. Kong D, Tan JZY, Yang F, Zeng J, Zhang X (2013) Electrodeposited Ag nanoparticles on TiO2 nanorods for enhanced UV visible light photoreduction CO2 to CH4. Appl Surf Sci 277:105–110

    CAS  Google Scholar 

  61. Zhang S, Peng B, Yang S, Fang Y, Peng F (2013) The influence of the electrodeposition potential on the morphology of Cu2O/TiO2 nanotube arrays and their visible-light-driven photocatalytic activity for hydrogen evolution. Int J Hydrog Energy 38(32):13866–13871

    CAS  Google Scholar 

  62. Lima ARF, Sczancoski JC, Siu Li M, Longo E, Camargo ER (2016) Structural characterization and photoluminescence behavior of pure and doped potassium strontium niobates ceramics with tetragonal tungsten-bronze structure. Ceram Int 42(4):4709–4714

    CAS  Google Scholar 

  63. Ganesh I, Kumar PP, Annapoorna I, Sumliner JM, Ramakrishna M, Hebalkar NY, Padmanabham G, Sundararajan G (2014) Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications. Appl Surf Sci 293:229–247

    CAS  Google Scholar 

  64. Ravichandiran C, Sakthivelu A, Davidprabu R, Valanarasu S, Kathalingam A, Ganesh V, Shkir M, Algarni H, AlFaify S (2019) In-depth study on structural, optical, photoluminescence and electrical properties of electrodeposited Cu2O thin films for optoelectronics: an effect of solution pH. Microelectron Eng 210:27–34

    CAS  Google Scholar 

  65. Gao ST, Xiang SQ, Shi JL, Zhang W, Zhao LB (2020) Theoretical understanding of the electrochemical reaction barrier: a kinetic study of CO2 reduction reaction on copper electrodes. Phys Chem Chem Phys 22(17):9607–9615

    CAS  PubMed  Google Scholar 

  66. Sun Z, Ma T, Tao H, Fan Q, Han B (2017) Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3(4):560–587

    CAS  Google Scholar 

  67. Gao D, McCrum IT, Deo S et al (2018) Activity and selectivity control in CO2 Electroreduction to multicarbon products over CuOx catalysts via electrolyte design. ACS Catal 8(11):10012–10020

    CAS  Google Scholar 

  68. De Brito JF, Zanoni MVB (2017) On the application of Ti/TiO2/CuO n-p junction semiconductor: a case study of electrolyte, temperature and potential influence on CO2 reduction. Chem Eng J 318:264–271

    Google Scholar 

  69. Kočí K, Obalová L, Matějová L, Plachá D, Lacný Z, Jirkovský J, Šolcová O (2009) Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl Catal B Environ 89(3-4):494–502

    Google Scholar 

  70. Tu W, Zhou Y, Zou Z (2014) Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv Mater 26(27):4607–4626

  71. Furube A, Asahi T, Masuhara H, Yamashita H, Anpo M (2001) Direct observation of a picosecond charge separation process in photoexcited platinum-loaded TiO2 particles by femtosecond diffuse reflectance spectroscopy. Chem Phys Lett 336(5-6):424–430

    CAS  Google Scholar 

  72. Li Y, Zhang W, Shen X, Peng P, Xiong L, Yu Y (2015) Octahedral Cu2O-modified TiO2 nanotube arrays for efficient photocatalytic reduction of CO2. Cuihua Xuebao/Chinese J Catal 36(12):2229–2236

    Google Scholar 

  73. Moniz SJA, Tang J (2015) Charge transfer and photocatalytic activity in CuO/TiO2 nanoparticle heterojunctions synthesised through a rapid, one-pot, microwave solvothermal route. ChemCatChem 7(11):1659–1667

  74. Rawal SB, Bera S, Lee D, Jang DJ, Lee WI (2013) Design of visible-light photocatalysts by coupling of narrow bandgap semiconductors and TiO2: effect of their relative energy band positions on the photocatalytic efficiency. Catal Sci Technol 3(7):1822–1830

  75. Balzani V, Ceroni P, Juris A (2014) Photochemistry and Photophysics: concepts, research, applications. Wiley-VCH Verlag GmbH & Co., Weinheim

    Google Scholar 

  76. Chen BR, Nguyen VH, Wu JCS, Martin R, Kočí K (2016) Production of renewable fuels by the photohydrogenation of CO2: effect of the cu species loaded onto TiO2 photocatalysts. Phys Chem Chem Phys 18(6):4942–4951

  77. Xi Z, Li C, Zhang L, Xing M, Zhang J (2014) Synergistic effect of Cu2O/TiO2 heterostructure nanoparticle and its high H2 evolution activity. Int J Hydrog Energy 39(12):6345–6353

    CAS  Google Scholar 

  78. Wu G, Chen T, Zhou G, Zong X, Li C (2008) H2 production with low CO selectivity from photocatalytic reforming of glucose on metal/TiO2 catalysts. Sci China Ser B Chem 51(2):97–100

    CAS  Google Scholar 

  79. Chang X, Wang T, Zhang P, Wei Y, Zhao J, Gong J (2016) Stable aqueous Photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products. Angew Chem Int Ed 55(31):8840–8845

    CAS  Google Scholar 

  80. Yano J, Morita T, Shimano K, Nagami Y, Yamasaki S (2007) Selective ethylene formation by pulse-mode electrochemical reduction of carbon dioxide using copper and copper-oxide electrodes. J Solid State Electrochem 11(4):554–557

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of Centro de Equipamentos e Serviços Multiusuários – CESM – UNIFESP/Diadema, for providing the XRD and GC-FID analysis and the support of Brazilian Nanotechnology National Laboratory – LNNano/CNPEM for SEM (SEM-18470) and XPS (XPS-21555) facilities. The authors are grateful to the Prof. Máximo Siu Li (IFSC -USP/São Carlos) for the photoluminescence analyses and Prof. Maria Valnice Boldrin Zanoni for the DRS measurements (IQ-UNESP/Araraquara) and collaboration on photocatalytic experiments.

Code availability

Not applicable.

Funding

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (Process Number 2006/61261–2 and Process Number 2014/50945-4) and Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPQ (Process Number 483285/2011–0) and for financial support fellowship by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES (Finance Code 001).

Author information

Authors and Affiliations

Authors

Contributions

J. Almeida contributed to conception, acquisition, and interpretation of data analysis and participated in drafting the manuscript. M.S. Pacheco made a contribution of the data acquisition. J.F. Brito did a critical revision on the article. C.A. Rodrigues participated in interpretation of data and drafting the manuscript and also revising critically the content and important intellectual contribution and gave final approval of the version to be submitted. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Christiane de Arruda Rodrigues.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida, J., Pacheco, M.S., de Brito, J.F. et al. Contribution of CuxO distribution, shape and ratio on TiO2 nanotubes to improve methanol production from CO2 photoelectroreduction. J Solid State Electrochem 24, 3013–3028 (2020). https://doi.org/10.1007/s10008-020-04739-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04739-3

Keywords

Navigation