Skip to main content

Advertisement

Log in

Dopamine-assisted synthesis of rGO@NiPd@NC sandwich structure for highly efficient hydrogen evolution reaction

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We report a facile one-pot solvothermal synthesis of NiPd alloy homogeneously encapsulated between reduced graphene oxide sheets and N-doped carbon layers (rGO@NiPd@NC) with sandwich structure. In this study, dopamine served as both carbon-nitrogen source and green reagent, which cannot only form N-doped carbon layers encasing metal nanoparticles through high-temperature roasting but also co-reduce metal ions to form NiPd alloy. The rGO@NiPd@NC nanocomposite exhibits enhanced hydrogen evolution reaction (HER) activity with a small overpotential of 56 mV at 10 mA cm−2 and a Tafel slope approaching 33 mV dec−1 in acidic aqueous media, which are similar to the HER activity of commercial Pt/C catalyst (52 mV at j = 10 mA cm−2; Tafel slope, 31 mV dec−1). Additionally, the electrocatalyst which reveals excellent electrochemical stability is reflected in that the polarization curve shows negligible difference after 1000 cycles and the current density only slightly decreases within 20 h test, providing more possibilities for practical application in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Faber MS, Jin S (2014) Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ Sci 7(11):3519–3542

    CAS  Google Scholar 

  2. Hook M, Tang X (2013) Depletion of fossil fuels and anthropogenic climate change-a review. Energy Policy 52:797–809

    Google Scholar 

  3. Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418(6901):964–967

    CAS  PubMed  Google Scholar 

  4. Morales-Guio CG, Stern LA, Hu XL (2014) Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem Soc Rev 43(18):6555–6569

    CAS  PubMed  Google Scholar 

  5. Marini S, Salvi P, Nelli P, Pesenti R, Villa M, Berrettoni M, Zangari G, Kiros Y (2012) Advanced alkaline water electrolysis. Electrochim Acta 82:384–391

    CAS  Google Scholar 

  6. Jiao Y, Zheng Y, Jaroniec MT, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44(8):2060–2086

    CAS  PubMed  Google Scholar 

  7. Huang X, Zeng ZY, Bao SY, Wang MF, Qi XY, Fan ZX, Zhang H (2013) Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat Commun 4:1444

    PubMed  Google Scholar 

  8. Huang ZP, Chen ZZ, Chen ZB, Lv CC, Humphrey MG, Zhang C (2014) Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy 9:373–382

    CAS  Google Scholar 

  9. Li J, Zhou PP, Li F, Ren R, Liu Y, Niu JR, Ma JX, Zhang XY, Tian M, Jin J, Ma JT (2015) Ni@Pd/PEI-rGO stack structures with controllable Pd shell thickness as advanced electrodes for efficient hydrogen evolution. J Mater Chem A 3(21):11261–11268

    CAS  Google Scholar 

  10. Ren FM, Lu HY, Liu HT, Wang Z, Wu YE, Li YD (2015) Surface ligand-mediated isolated growth of Pt on Pd nanocubes for enhanced hydrogen evolution activity. J Mater Chem A 3(47):23660–23663

    CAS  Google Scholar 

  11. Guo JX, Sun JK, Sun YF, Liu QY, Zhang Q (2019) Electrodepositing Pd on NiFe layered double hydroxide for improved water electrolysis. Mater Chem Front 3(5):842–850

    CAS  Google Scholar 

  12. Yang XX, Xu WC, Cao S, Zhu SL, Liang YQ, Cui ZD, Yang XJ, Li ZY, Wu SL, Inoue A, Chen LY (2019) An amorphous nanoporous PdCuNi-S hybrid electrocatalyst for highly efficient hydrogen production. Appl Catal B 246:156–165

    CAS  Google Scholar 

  13. Al-Odail FA, Anastasopoulos A, Hayden BE (2011) Hydrogen evolution and hydrogen oxidation on palladium bismuth alloys. Top Catal 54(1–4):77–82

    CAS  Google Scholar 

  14. Zhong X, Qin YY, Chen XL, Xu WL, Zhuang GL, Li XN, Wang JG (2017) PtPd alloy embedded in nitrogen-rich graphene nanopores: high-performance bifunctional electrocatalysts for hydrogen evolution and oxygen reduction. Carbon 114:740–748

    CAS  Google Scholar 

  15. Li BB, Qiao SZ, Zheng XR, Yang XJ, Cui ZD, Zhu SL, Li ZY, Liang YQ (2015) Pd coated MoS2 nanoflowers for highly efficient hydrogen evolution reaction under irradiation. J Power Sources 284:68–76

    CAS  Google Scholar 

  16. Thoi VS, Sun YJ, Long JR, Chang CJ (2013) Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions. Chem Soc Rev 42(6):2388–2400

    CAS  PubMed  Google Scholar 

  17. Singh SK, Xu QA (2010) Bimetallic nickel-iridium nanocatalysts for hydrogen generation by decomposition of hydrous hydrazine. Chem Commun 46(35):6545–6547

    CAS  Google Scholar 

  18. Greeley J, Jaramillo TF, Bonde J, Chorkendorff IB, Norskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5(11):909–913

    CAS  PubMed  Google Scholar 

  19. Darabdhara G, Das MR, Amin MA, Mersal GAM, Mostafa NY, Abd El-Rehim SS, Szunerits S, Boukherroub R (2018) Au-Ni alloy nanoparticles supported on reduced graphene oxide as highly efficient electrocatalysts for hydrogen evolution and oxygen reduction reactions. Int J Hydrog Energy 43(3):1424–1438

    CAS  Google Scholar 

  20. Bao XB, Wang J, Lian X, Jin HY, Wang SP, Wang Y (2017) Ni/nitrogen-doped graphene nanotubes acted as a valuable tailor for remarkably enhanced hydrogen evolution performance of platinum-based catalysts. J Mater Chem A 5(31):16249–16254

    CAS  Google Scholar 

  21. Shen Y, Zhou YF, Wang D, Wu X, Li J, Xi JY (2018) Nickel–copper alloy encapsulated in graphitic carbon shells as electrocatalysts for hydrogen evolution reaction. Adv Energy Mater 8(2):1701759

    Google Scholar 

  22. Li SW, Wang YC, Peng SJ, Zhang LJ, Al-Enizi AM, Zhang H, Sun XH, Zheng GF (2016) Co-Ni-based nanotubes/nanosheets as efficient water splitting electrocatalysts. Adv Energy Mater 6(3):1501661

    Google Scholar 

  23. Elias L, Hegde AC (2017) Effect of magnetic field on HER of water electrolysis on Ni-W alloy. Electrocatalysis 8(4):375–382

    CAS  Google Scholar 

  24. Zhang TT, Liu XW, Cui X, Chen ML, Liu SJ, Geng BY (2018) Colloidal synthesis of Mo-Ni alloy nanoparticles as bifunctional electrocatalysts for efficient overall water splitting. Adv Mater Interfaces 5(13):1800359

    Google Scholar 

  25. Ahmed J, Ahamad T, AlShehri SM (2017) Iron-nickel nanoparticles as bifunctional catalysts in water electrolysis. Chem Electro Chem 4(5):1222–1226

    CAS  Google Scholar 

  26. El-Kady MF, Shao YL, Kaner RB (2016) Graphene for batteries, supercapacitors and beyond. Nat Rev Mater 1(7):16033

    CAS  Google Scholar 

  27. Liu MM, Zhang RZ, Chen W (2014) Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chem Rev 114(10):5117–5160

    CAS  PubMed  Google Scholar 

  28. Brownson DAC, Kampouris DK, Banks CE (2011) An overview of graphene in energy production and storage applications. J Power Sources 196(11):4873–4885

    CAS  Google Scholar 

  29. Qu LT, Liu Y, Baek JB, Dai LM (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321–1326

    CAS  PubMed  Google Scholar 

  30. Panchokarla LS, Subrahmanyam KS, Saha SK, Govindaraj A, Krishnamurthy HR, Waghmare UV, Rao CNR (2009) Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv Mater 21(46):4726–4730

    Google Scholar 

  31. Wang Y, Shao YY, Matson DW, Li JH, Lin YH (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4(4):1790–1798

    CAS  PubMed  Google Scholar 

  32. Zhang X, Li C, Si TF, Lei H, Wei CB, Sun YF, Zhan TR, Liu QY, Guo JX (2018) FeNi cubic cage@ N-doped carbon coupled with N-doped graphene toward efficient electrochemical water oxidation. ACS Sustain Chem Eng 6(7):8266–8273

    CAS  Google Scholar 

  33. Debata S, Banerjee S, Sharma PK (2019) Marigold shaped N-rGO-MoS2-Ni(OH)2 nanocomposite as a bifunctional electrocatalyst for the promotion of overall water splitting in alkaline medium. Electrochim Acta 303:257–267

    CAS  Google Scholar 

  34. Zeng T, Zhang XL, Ma YR, Niu HY, Cai YQ (2012) A novel Fe3O4-graphene-au multifunctional nanocomposite: green synthesis and catalytic application. J Mater Chem 22(35):18658–18663

    CAS  Google Scholar 

  35. Luo J, Zhang N, Liu R, Liu XY (2014) In situ green synthesis of au nanoparticles onto polydopamine-functionalized graphene for catalytic reduction of nitrophenol. RSC Adv 4(110):64816–64824

    CAS  Google Scholar 

  36. Cui MJ, Ren SM, Zhao HC, Xue QJ, Wang LP (2018) Polydopamine coated graphene oxide for anticorrosive reinforcement of water-borne epoxy coating. Chem Eng J 335:255–266

    CAS  Google Scholar 

  37. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849):426–430

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Jia ZF, Li HQ, Zhao Y, Frazer L, Qian BS, Borguet E, Ren F, Dikin DA (2017) Electrical and mechanical properties of poly(dopamine)-modified copper/reduced graphene oxide composites. J Mater Sci 52(19):11620–11629

    CAS  Google Scholar 

  39. Zhou HF, Huang TT, Chen DJ, Li SX, Yu HW, Li YH, Song QJ (2017) Copper nanoparticles modified nitrogen doped reduced graphene oxide 3-D superstructure for simultaneous determination of dihydroxybenzene isomers. Sensors Actuators B Chem 249:405–413

    CAS  Google Scholar 

  40. Black KCL, Liu ZQ, Messersmith PB (2011) Catechol redox induced formation of metal core-polymer shell nanoparticles. Chem Mater 23(5):1130–1135

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu LQ, Yang WJ, Neoh KG, Kang ET, Fu GD (2010) Dopamine-induced reduction and functionalization of graphene oxide nanosheets. Macromolecules 43(20):8336–8339

    CAS  Google Scholar 

  42. Zheng LZ, Xiong LY, Li YD, Xu JP, Kang XW, Zou ZJ, Yang SM, Xia J (2013) Facile preparation of polydopamine-reduced graphene oxide nanocomposite and its electrochemical application in simultaneous determination of hydroquinone and catechol. Sensors Actuators B Chem 177:344–349

    CAS  Google Scholar 

  43. Chen Y, Wang L, Zhai YN, Chen HY, Dou YB, Li JR, Zheng HQ, Cao R (2017) Pd-Ni nanoparticles supported on reduced graphene oxides as catalysts for hydrogen generation from hydrazine. RSC Adv 7(51):32310–32315

    CAS  Google Scholar 

  44. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401

    CAS  PubMed  Google Scholar 

  45. Tian Y, Cao YY, Pang F, Chen GQ, Zhang X (2014) Ag nanoparticles supported on N-doped graphene hybrids for catalytic reduction of 4-nitrophenol. RSC Adv 4(81):43204–43211

    CAS  Google Scholar 

  46. Zhou CY, Szpunar JA, Cui XY (2016) Synthesis of Ni/graphene nanocomposite for hydrogen storage. ACS Appl Mater Interfaces 8(24):15232–15241

    CAS  PubMed  Google Scholar 

  47. Wang YR, He QL, Guo J, Wei HG, Ding KQ, Lin HF, Bhana S, Huang XH, Luo ZP, Shen TD, Wei SY, Guo ZH (2015) Carboxyl multiwalled carbon-nanotube-stabilized palladium nanocatalysts toward improved methanol oxidation reaction. Chem Electro Chem 2(4):559–570

    CAS  Google Scholar 

  48. Sen B, Kuzu S, Demir E, Akocak S, Sen F (2017) Monodisperse palladium-nickel alloy nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine-borane. Int J Hydrog Energy 42(36):23276–23283

    CAS  Google Scholar 

  49. Lu Q, Hutchings GS, Yu WT, Zhou Y, Forest RV, Tao RZ, Rosen J, Yonemoto BT, Cao ZY, Zheng HM, Xiao JQ, Jiao F, Chen JGG (2015) Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution. Nat Commun 6:6567

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mandegarzad S, Raoof JB, Hosseini SR, Ojani R (2016) Cu-Pt bimetallic nanoparticles supported metal organic framework-derived nanoporous carbon as a catalyst for hydrogen evolution reaction. Electrochim Acta 190:729–736

    CAS  Google Scholar 

  51. Zheng Y, Jiao Y, Jaroniec M, Qiao SZ (2015) Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew Chem 54(1):52–65

    CAS  Google Scholar 

  52. Nowotny J, Hoshino T, Dodson J, Atanacio AJ, Ionescu M, Peterson V, Prince KE, Yamawaki M, Bak T, Sigmund W, Veziroglu TN, Alim MA (2016) Towards sustainable energy. Generation of hydrogen fuel using nuclear energy. Int J Hydrog Energy 41(30):12812–12825

    CAS  Google Scholar 

  53. Huang ZP, Chen ZB, Chen ZZ, Lv CC, Meng H, Zhang C (2014) Ni12P5 nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis. ACS Nano 8(8):8121–8129

    CAS  PubMed  Google Scholar 

  54. Chen WF, Muckerman JT, Fujita E (2013) Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem Commun 49(79):8896–8909

    CAS  Google Scholar 

  55. Ma LB, Shen XP, Zhou H, Zhu GX, Ji ZY, Chen KM (2015) CoP nanoparticles deposited on reduced graphene oxide sheets as an active electrocatalyst for the hydrogen evolution reaction. J Mater Chem A 3(10):5337–5343

    CAS  Google Scholar 

  56. Sun YJ, Liu C, Grauer DC, Yano JK, Long JR, Yang PD, Chang CJ (2013) Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. J Am Chem Soc 135(47):17699–17702

    CAS  PubMed  Google Scholar 

  57. Bao JH, Wang JQ, Zhou YM, Hu YJ, Zhang ZW, Li TF, Xue Y, Guo C, Zhang YW (2019) Anchoring ultrafine PtNi nanoparticles on N-doped graphene for highly efficient hydrogen evolution reaction. Catal Sci Technol 9(18):4961–4969

    CAS  Google Scholar 

  58. Xu Y, Zhang B (2014) Recent advances in porous Pt-based nanostructures: synthesis and electrochemical applications. Chem Soc Rev 43(8):2439–2450

    CAS  PubMed  Google Scholar 

  59. Jiang B, Li CL, Tang J, Takei T, Kim JH, Ide Y, Henzie J, Tominaka S, Yamauchi Y (2016) Tunable-sized polymeric micelles and their assembly for the preparation of large Mesoporous platinum nanoparticles. Angew Chem Int Ed 55(34):10037–10041

    CAS  Google Scholar 

  60. Li GQ, Kobayashi H, Dekura S, Ikeda R, Kubota Y, Kato K, Takata M, Yamamoto T, Matsumura S, Kitagawa H (2014) Shape-dependent hydrogen-storage properties in Pd nanocrystals: which does hydrogen prefer, octahedron (111) or cube (100)? J Am Chem Soc 136(29):10222–10225

    CAS  PubMed  Google Scholar 

  61. Trasatti S, Petrii OA (1991) Real surface area measurements in electrochemistry. Pure Appl Chem 63(5):711–734

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Nature Science Foundation of China (21978048, 51673040, 21878047 and 21676056), the Fundamental Research Funds for the Central Universities (2242019k30042), Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX19_0103), Priority Academic Program Development of Jiangsu Higher Education Institutions (PADA) (1107047002), Fund Project for Transformation of Scientific and Technological Achievements of Jiangsu Province of China (BA2018045).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuming Zhou or Yiwei Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 34.7 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Bao, J., Zhou, Y. et al. Dopamine-assisted synthesis of rGO@NiPd@NC sandwich structure for highly efficient hydrogen evolution reaction. J Solid State Electrochem 24, 137–144 (2020). https://doi.org/10.1007/s10008-019-04459-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04459-3

Keywords

Navigation