Skip to main content
Log in

Effects of oxalic acid concentration on the microstructures and properties of nano-VO2(B)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, a series of VO2(B) samples were synthesized via a hydrothermal process by reducing V2O5 with different concentrations of oxalic acid. The prepared samples were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, cyclic voltammetry, and galvanostatic charge–discharge. Furthermore, the microdefects of VO2 samples were characterized by positron lifetime spectroscopy. The results revealed that VO2(B) was successfully prepared and the concentration of reducing agent had a certain influence on the microstructures and properties. The electrochemical performance measurements showed that all samples had good cycle stability in 2 mol/L KOH solution. The x = 1.50 sample displayed higher discharge capacitance of 149.5 F g−1 at 30 mA g−1 and the discharge capacitance remained about 67% even after 80 charge/discharge cycles. The positron lifetime spectra revealed that the main defects in VO2 samples were microvoids, and the defect concentration and size were affected by the C2H2O4 concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bin D, Wen YP, Wang YG, Xia YY (2018) The development in aqueous lithium-ion batteries. J Energy Chem 27(6):1521–1535

    Article  Google Scholar 

  2. Li M, Lu J, Chen ZY, Amine K (2018) 30 years of lithium-ion batteries. Adv Mater 30(33):1800561

    Article  CAS  Google Scholar 

  3. Milošević SS, Stojkovic I, Mitrić M, Cvjetićanin N (2015) High performance of solvothermally prepared VO2(B) as anode for aqueous rechargeable lithium batteries. J Serb Chem Soc 80(5):685–694

    Article  CAS  Google Scholar 

  4. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603

    Article  CAS  Google Scholar 

  5. Lee S, Sun XG, Lubimtsev AA, Gao X, Ganesh P, Ward TZ, Eres G, Chisholm MF, Dai S, Lee HN (2017) Persistent electrochemical performance in epitaxial VO2(B). Nano Lett 17(4):2229–2233

    Article  CAS  PubMed  Google Scholar 

  6. Ashton TE, Hevia Borrás D, Iadecola A, Wiaderek KM, Chupas PJ, Chapman KW, Corr SA (2015) Microwave-assisted synthesis and electrochemical evaluation of VO2(B) nanostructures. Acta Crystallogr Sect B: Struct Sci Cryst Eng Mater 71(6):722–726

    Article  CAS  Google Scholar 

  7. Wu C, Xie Y (2010) Promising vanadium oxide and hydroxide nanostructures: from energy storage to energy saving. Energy Environ Sci 3(9):1191–1206

    Article  CAS  Google Scholar 

  8. Zhang YF, Fan MJ, Zhou M, Huang C, Chen CX, Cao YL, Xie GY, Li HB, Liu XH (2012) Controlled synthesis and electrochemical properties of vanadium oxides with different nanostructures. Bull Mater Sci 35(3):369–376

    Article  CAS  Google Scholar 

  9. Song HJ, Choi M, Kin JC, Park S, Lee CW, Hong SH, Kim BK, Kim DW (2016) Enhanced lithium storage in reduced graphene oxide-supported M-phase vanadium(IV) dioxide nanoparticles. Sci Rep 6(1):30202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu YY, Uchaker E, Zhou N, Li JG, Zhang QF, Cao GZ (2012) Facile synthesis of nanostructured vanadium oxide as cathode materials for efficient Li-ion batteries. J Mater Chem 22(46):24439

    Article  CAS  Google Scholar 

  11. Dastan D, Chaure N, Kartha M (2017) Surfactants assisted solvothermal derived titania nanoparticles: synthesis and simulation. J Mater Sci Mater Electron 28(11):7784–7796

    Article  CAS  Google Scholar 

  12. Dastan D (2017) Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol-gel. Appl Phys A Mater Sci Process 123:1–13

    Article  CAS  Google Scholar 

  13. Ni J, Jiang WT, Yu K, Sun F, Zhu ZQ (2011) Electrochemical performance of B and M phases VO2 nanoflowers. Cryst Res Technol 46(5):507–510

    Article  CAS  Google Scholar 

  14. Wang Q, Pan J, Li M, Luo YY, Wu H, Zhong L, Li GH (2015) VO2(B) Nanosheets as a cathode material for Li-ion battery. J Mater Sci Technol 31(6):630–633

    Article  CAS  Google Scholar 

  15. Wang W, Jiang B, Hu LW (2014) Single crystalline VO2 nanosheets: a cathode material for sodium-ion batteries with high rate cycling performance. J Power Sources 250:181–187

    Article  CAS  Google Scholar 

  16. Zhang ZH, Guo H, Ding WQ, Zhang B, Lu Y, Ke XX, liu WW, Chen FR, Sui ML (2017) Nanoscale engineering in VO2 nanowires via direct electron writing process. Nano Lett 17(2):851–855

    Article  CAS  PubMed  Google Scholar 

  17. Liu Q, Tan GQ, Wang P (2017) Revealing mechanism responsible for structural reversibility of single-crystal VO2 nanorods upon lithiation/delithiation. Nano Energy 36:197–205

    Article  CAS  Google Scholar 

  18. Pogrebnjak AD, Ponomarev AG, Shpak AP, Kunitskii YA (2012) Application of micro- and nanoprobes to the analysis of small-sized 3D materials, nanosystems, and nanoobjects. Phys-Usp+ 55(3):270–300

    Article  CAS  Google Scholar 

  19. Gidley DWG, Peng HG, Vallery RS (2006) Positron annihilation as a method to characterize porous material. Annu Rev Mater Res 36(1):49–79

    Article  CAS  Google Scholar 

  20. Kawasuso A, Hasegawa M, Suezawa M, Yamaguchi S, Sumino K (1994) An annealing study of defects induced by electron irradiation of Czochralski-grown Si using a positron lifetime technique. Appl Surf Sci 85:280–286

    Article  Google Scholar 

  21. Blau M, Tsur D, Weger M, Ashkenazi J, Merenda P (1977) Positron annihilation in a single VO2 crystal. J Phys C Solid State Phys 10(17):3305–3313

    Article  CAS  Google Scholar 

  22. Dastan D (2015) Nanostructured anatase titania thin films prepared by sol-gel dip coating technique. J Atom Mol Condens Nano Phys 2:109–114

    Google Scholar 

  23. Panahi SL, Dastan D, Chaure NB (2016) Characterization of zirconia nanoparticles grown by sol-gel method. Adv Sci Lett 22(4):941–944

    Article  Google Scholar 

  24. Yin XT, Zhou WD, Li J, Lv P, Wang Q, Wang D, Wu FY, Dastan D, Garmestani H, Shi ZC, Talu S (2019) Tin dioxide nanoparticles with high sensitivity and selectivity for gas sensors at sub ppm level of hydrogen gas detection. J Mater Sci Mater Electron 30(15):14687–14694. https://doi.org/10.1007/s10854-019-01840-w

    Article  CAS  Google Scholar 

  25. Yin XT, Zhou WD, Li J, Wang Q, Wu FY, Dastan D, Wang D, Garmestani H, Wang XM, Talu S (2019) A highly sensitivity and selectivity Pt-SnO2 nanoparticles for sensing applications at extremely low level hydrogen gas detection. J Alloys Compd 805:229–236

    Article  CAS  Google Scholar 

  26. Goel S, Kumar B (2019) Hierarchical Sm-doped ZnO nanorod–nanosheet architecture: dielectric and ferroelectric studies. Appl Phys A Mater 125(5). https://doi.org/10.1007/s00339-019-2584-y(4qu

  27. Ocakoglu K, Mansour SA, Yildirimcan S, Al-Ghamdi AA, El-Tantawy F, Yakuphanoglu F (2015) Microwave-assisted hydrothermal synthesis and characterization of ZnO nanorods. Spectrochim Acta A 148:362–368

    Article  CAS  Google Scholar 

  28. Dai HY, Xie XY, Chen ZP, Ye FJ, Li T, Yang Y (2018) Microstructure evolution and magnetic properties of Eu doped CuFeO2 multiferroic ceramics studied by positron annihilation. Ceram Int 44(12):13894–13900

    Article  CAS  Google Scholar 

  29. Mai LQ, Wei QL, An QY, Tian XC, Zhao YL, Xu X, Xu L, Chang L, Zhang QJ (2013) Nanoscroll buffered hybrid nanostructural VO2(B) cathodes for high-rate and long-life lithium storage. Adv Mater 25(21):2969–2973

    Article  CAS  PubMed  Google Scholar 

  30. Li H, Zhai T, He P, Wang Y, Hosono E (2011) Single-crystal H2V3O8 nanowires: a competitive anode with large capacity for aqueous lithium-ion batteries. J Mater Chem 21(6):1780–1787

    Article  CAS  Google Scholar 

  31. Wang NN, Zhang YF, Hu T, Zhao YF, Meng CG (2015) Facile hydrothermal synthesis of ultrahigh-aspect-ratio V2O5 nanowires for high-performance supercapacitors. Curr Appl Phys 15(4):493–498

    Article  CAS  Google Scholar 

  32. Qin M, Liang Q, Pan A, Liang S, Zhang Q, Tang Y, Tan X (2014) Template-free synthesis of vanadium oxides nanobelt arrays as high-rate cathode materials for lithium ion batteries. J Power Sources 268:700–705

    Article  CAS  Google Scholar 

  33. Huang GF, Li CP, Sun XW, Bai J (2017) Fabrication of vanadium oxide, with different valences of vanadium, -embedded carbon fibers and their electrochemical performance for supercapacitor. New J Chem 41(17):8977–8984

    Article  CAS  Google Scholar 

  34. Li ZJ, Qin Z, Zhang WY, Li ZK (2018) Controlled synthesis of Ni(OH)2/MoS2 nanohybrids for high-performance supercapacitors. Mater Chem Phys 209:291–297

    Article  CAS  Google Scholar 

  35. Zhang YF, Jing XY, Cheng Y, Hu T, Meng CG (2018) Controlled synthesis of 3D porous VO2(B) hierarchical spheres with di erent interiors for energy storage. Inorg Chem Front 5(11):2798–2810

    Article  CAS  Google Scholar 

  36. Zhu XT, Yang J, Dastan D, Garmestani H, Fan RH, Shi ZC (2019) Fabrication of core-shell structured Ni@BaTiO3 scaffolds for polymer composites with ultrahigh dielectric constant and low loss. Composites Part A 125:10552

    Article  CAS  Google Scholar 

  37. Encinas-Sánchez V, de Miguel MT, Lasanta MI, García-Martín G, Pérez FJ (2019) Electrochemical impedance spectroscopy (EIS): an efficient technique for monitoring corrosion processes in molten salt environments in CSP applications. Sol Energy Mater Sol Cells 191:157–163

    Article  CAS  Google Scholar 

  38. Zhang YF, Huang YT (2016) A facile hydrothermal synthesis of tungsten doped monoclinic vanadium dioxide with B phase for supercapacitor electrode with pseudocapacitance. Mater Lett 182:285–288

    Article  CAS  Google Scholar 

  39. Dastan D, Gosavi SW, Chaure NB (2015) Studies on electrical properties of hybrid polymeric gate dielectric for field effect transistors. Macromol Symp 347(1):81–86

    Article  CAS  Google Scholar 

  40. Dastan D, Leila Panahi S, Yengntiwar AP, Banpurkar AG (2016) Morphological and electrical studies of titania powder and films grown by aqueous solution method. Adv Sci Lett 22(4):950–953

    Article  Google Scholar 

  41. Mai LQ, Han CH (2008) Reaction-crystallization growth and electrical property of ammonium decavanadate nanorods. Mater Lett 62(10-11):1458–1461

    Article  CAS  Google Scholar 

  42. Dastan D, Banpurkar A (2016) Solution processable sol-gel derived titania gate dielectric for organic field effect transistors. J Mater Sci Mater Electron 28:3851–3859

    Article  CAS  Google Scholar 

  43. Lao CH, Liu J, Gao PX, Zhang LY, Davidovic D, Tummala R, Wang ZL (2006) ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresis alignment across Au electrodes. Nano Lett 6(2):263–266

    Article  CAS  PubMed  Google Scholar 

  44. Li Z, Zhang WY, Li YC, Wang HY, Qin Z (2018) Activated pyrene decorated graphene with enhanced performance for electrochemical energy storage. Chem Eng J 334:845–854

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (No. 11405148, 11675149, 11775192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenping Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Yang, P., Dai, H. et al. Effects of oxalic acid concentration on the microstructures and properties of nano-VO2(B). J Solid State Electrochem 23, 2951–2959 (2019). https://doi.org/10.1007/s10008-019-04385-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04385-4

Keywords

Navigation