Skip to main content
Log in

Electrodeposition of corrosion-resistant Cr–P and Cr–P–W coatings from solutions based on compounds of trivalent chromium

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Corrosion-resistant Cr–P and Cr–P–W coatings were obtained by electrodeposition from aqueous and aqueous–organic (DMF/water) solutions. The inclusion of phosphorus in the deposits formed on the cathode was confirmed using the EDX and XPS techniques. X-ray diffraction data revealed that co-deposition of phosphorus with chromium resulted in amorphization of the obtained coatings. It was shown that the incorporation of phosphorus into the coatings leads to the disappearance of the region of potentials corresponding to active metal dissolution as compared to Cr coatings. As a result, the coatings demonstrate higher corrosion resistance. Cracking of Cr–P coatings leads to a decrease in their protective ability with respect to steel. The impossibility of obtaining thick Cr–P layers by electrodeposition from aqueous solutions limits the sphere of their possible application. This problem was solved by electrodeposition of Cr–P–W coatings from aqueous–organic media. At coating thicknesses above 10 μm, fully penetrating pores in Cr–P–W coatings practically disappeared. The addition of tungsten to the composition of cathodic deposits resulted in an additional increase in their corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. All electrode potentials are given versus the standard hydrogen electrode (SHE).

References

  1. Vinokurov EG, Bondar’ VV (2009) Dynamics of the development of the subject field "alloy electroplating". Prot Met Phys Chem Surf 45(3):369–371

    Article  CAS  Google Scholar 

  2. Mohan S, Saravanan G, Renganathan NG (2011) Comparison of chromium coatings and electrochemical behaviour with direct current and pulse current deposition in trivalent chromium formate urea bath as alternative to conventional Cr coatings. Surf Eng 27:775–783

    Article  CAS  Google Scholar 

  3. Protsenko VS, Danilov FI (2014) Chromium electroplating from trivalent chromium baths as an environmentally friendly alternative to hazardous hexavalent chromium baths: comparative study on advantages and disadvantages. Clean Techn Environ Policy 16:1201–1206

    Article  CAS  Google Scholar 

  4. Vinokurov EG, Meshalkin VP, Vasilenko EA, Nevmyatullina KA, Burukhina TF, Bondar VV (2016) System analysis of the efficiency and competitiveness of chroming technologies. Theor Found Chem Eng 50:730–738

    Article  CAS  Google Scholar 

  5. Zhang H, Liu L, Bai J, Liu Z (2015) Corrosion behavior and microstructure of electrodeposited nano-layered Ni–Cr coatings. Thin Solid Films 395:36–40

    Article  CAS  Google Scholar 

  6. Tharamani CN, Hoor FS, Begum NS, Mayanna SN (2006) Electrodeposition and characterization of Ni–Cr alloy coating. J Electrochem Soc 153:C164–C169

    Article  CAS  Google Scholar 

  7. Surviliene S, Cesuniene A, Selskis A, Juskenas R (2010) Electrodeposition of chromium-cobalt alloy from Cr(III) formate-urea electrolyte. Trans IMF 88:100–106

    Article  CAS  Google Scholar 

  8. Efimov EA, Chernykh VV (2001) Electroplating with chromium-cobalt alloy. Prot Met 37:396–397

    Article  CAS  Google Scholar 

  9. Sheu H-H, Lu C-E, Lee H-B, Pu N-W, Wu P-F, Hsieh S-H, Ger M-D (2016) Electrodeposition of black chromium-cobalt alloy based on trivalent sulfate electrolyte. J Taiwan Inst Chem Eng 59:496–505

    Article  CAS  Google Scholar 

  10. Kuznetsov VV, Pavlov LN, Vinokurov EG, Filatova EA, Kudryavtsev VN (2015) Corrosion resistance of Cr–C–W alloys produced by electrodeposition. J Solid State Electrochem 19:2545–2553

    Article  CAS  Google Scholar 

  11. Kuznetsov VV, Pavlov LN, Filatova EA, Vinokurov EG (2018) Peculiarities of chromium electrodeposition from water-dimethylformamide solutions. J Solid State Electrochem 22:217–225

    Article  CAS  Google Scholar 

  12. Kuznetsov VV, Filatova EA, Telezhkina AV, Kruglikov SS (2018) Corrosion resistance of Co–Cr–W coatings obtained by electrodeposition. J Solid State Electrochem 22:2267–2276

    Article  CAS  Google Scholar 

  13. Kuznetsov VV, Matveev DV (2008) Electrodeposition of chromium-molybdenum alloy from electrolyte based on chromium (III) sulfate. Russ J Electrochem 44:796–802

    Google Scholar 

  14. Edigaryan AA, Safonov VA, Lubnin EN, Vykhodtseva LN, Chusova GE, Polukarov YM (2002) Properties and preparation of amorphous chromium carbide electroplates. Electrochim Acta 47:2775–2786

    Article  CAS  Google Scholar 

  15. Wienberg JHOJ, Steegh M, Aarnts MP, Lammers KR, Mol JMC (2015) Electrodeposition of mixed chromium metal-carbide-oxide coatings from a trivalent chromium-formate electrolyte without a buffering agent. Electrochim Acta 173:819–826

    Article  CAS  Google Scholar 

  16. Lu C-E, Lee J-L, Sheu H-H, Hou K-H, Tseng C-C, Ger M-D (2015) Preparation and characterizations of high carbon content Cr–C coatings electroplated from a trivalent chromium-based bath. Int J Electrochem Sci 10:5405–5419

    CAS  Google Scholar 

  17. Vinokurov EG, Kudryavtsev VN, Bondar VV (1992) Certain laws of the electrodeposition of a chromium-phosphorus alloy. Prot Met 27(3):363–367

    Google Scholar 

  18. Zhang J, GuCh TY, Gou J, Wang X, Tu J (2015) Microstructure and corrosion behavior of Cr and Cr–P alloy coatings electrodeposited from a Cr(III) deep eutectic solvent. RSC Adv 5:71268–71277

    Article  CAS  Google Scholar 

  19. Imaz N, Ostra M, Vidal M, Diez JA, Sarret M, Garcia-Lecina M (2014) Corrosion behaviour of chromium coatings obtained by direct and reverse pulse plating electrodeposition in NaCl aqueous solution. Corros Sci 78:251–259

    Article  CAS  Google Scholar 

  20. Sziraki L, Kuzmann E, Papp K, Chisholm CU, El-Sharif MR, Havancsak K (2012) Electrochemical behaviour of amorphous electrodeposited chromium coatings. Mater Chem Phys 133(2–3):1092–1100

    Article  CAS  Google Scholar 

  21. Waseda Y, Aust KT (1981) Corrosion resistance of metallic glasses. J Mater Sci 16:2337–2359

    Article  CAS  Google Scholar 

  22. Sousa CAC, Ribeiro DV, Kiminami CS (2016) Corrosion resistance of Fe–Cr based amorphous alloys: an overview. J Non-Cryst Solids 442:56–66

    Article  CAS  Google Scholar 

  23. Moffat TP, Latanision RM, Ruf RR (1988) Electrochemistry of chromium base binary glasses. Mater Sci Eng 99:525–528

    Article  CAS  Google Scholar 

  24. Demaree JD, Was GS, Sorensen NR (1993) Chemical and structures effects of phosphorus on corrosion behavior of ion beam mixed Fe–Cr–P alloys. J Electrochem Soc 140:331–342

    Article  CAS  Google Scholar 

  25. Zeng Z, Liang A, Zhang J (2008) Electrochemical corrosion behavior of chromium-phosphorus coatings electrodeposited from trivalent chromium baths. Electrochim Acta 53:7344–7349

    Article  CAS  Google Scholar 

  26. Li B, Lin A, Gan F (2006) Preparation and characterization of Cr–P coatings by electrodeposition from trivalent chromium electrolytes using malonic acid as complex. Surf Coat Technol 201:2578–2586

    Article  CAS  Google Scholar 

  27. Suarez OJ, Olaya JJ, Suarez MF, Rodil SE (2012) Corrosion resistance of decorative chromium films obtained from trivalent chromium solutions. J Chil Chem Soc 57:977–982

    Article  CAS  Google Scholar 

  28. Li B, Lin A, Wu X, Zhang Y, Gan F (2008) Electrodeposition and characterization of Fe–Cr–P amorphous alloys from trivalent chromium sulfate electrolyte. J Alloys Compd 453:93–101

    Article  CAS  Google Scholar 

  29. Jeeva PA, Karthikeyan S, Narayanan S (2013) Performance characteristics of corrosion resistance black coatings. Process Eng 64:491–496

    CAS  Google Scholar 

  30. Mishra AK, Shoesmith DW (2014) Effect of alloying elements on crevice corrosion inhibition of nickel-chromium-molybdenum-tungsten alloys under aggressive conditions: an electrochemical study. Corrosion 70:721–730

    Article  CAS  Google Scholar 

  31. Cwalina KL, Demarest CR, Gerard AY, Scully JR (2019) Revisiting the effects of molybdenum and tungsten alloying on corrosion behavior of nickel-chromium alloys in aqueous corrosion. Curr Opin Solid State Mater Sci. https://doi.org/10.1016/j.cossms.2019.03.002

  32. Rogers DG, Burr AA (1950) Electrodeposition of chromium-tungsten alloy plates. J Electrochem Soc 97:67–69

    Article  CAS  Google Scholar 

  33. Barnum DW (1983) Hydrolysis of cations. Formation constants and standard free energies of formation of hydroxycomplexes. Inorg Chem 22:2297–2305

    Article  CAS  Google Scholar 

  34. Vinokurov EG, Bondar VV (2007) Electrooxidation of Cr3+ ions in sulfuric acid solutions. Prot Met 43:113–117

    Article  CAS  Google Scholar 

  35. Hurlen T, Hornkjøl S, Gulbrandsen E (1993) The active dissolution of chromium. Electrochim Acta 38:643–645

    Article  CAS  Google Scholar 

  36. Drazic DM, Popic JP (2002) Dissolution of chromium in sulfuric acid. J Serb Chem Soc 67:777–782

    Article  CAS  Google Scholar 

  37. Diegle RB, Sorensen NR, Nelson GC (1986) Dissolution of glassy Ni–P alloys in H2SO4 and HCl electrolytes. J Electrochem Soc 133:1769–1776

    Article  CAS  Google Scholar 

  38. Petukhov LV, Medvedeva NA, Subakova IR, Kichigin VI (2014) Corrosion-electrochemical behavior of Ni–P coatings in deaerated acidic sulfate solutions. Prot Met Phys Chem Surf 50:875–882

    Article  CAS  Google Scholar 

  39. El-Sharif MR, Watson A, Chisholm CU (1988) The sustained deposition of thick coatings of chromium/nickel and chromium/nickel/iron alloys and their properties. Trans IMF 66:34–40

    Article  CAS  Google Scholar 

  40. Watson A, Anderson AMH, El-Sharif MR, Chisholm CU (1991) Role of chromium II catalysed olation reactions in the sustained deposition of chromium and its alloys from environmentally acceptable chromium (III) electrolytes. Trans IMF 69:26–32

    Article  CAS  Google Scholar 

  41. Watson A, Chisholm CU, El-Sharif MR (1986) The role of chromium(II) and (VI) in the electrodeposition of chromium–nickel alloys from trivalent chromium–amide electrolytes. Trans IMF 64:149–153

    Article  CAS  Google Scholar 

  42. McCafferty E (2005) Validation of corrosion rates measured the Tafel extrapolation method. Corros Sci 47:3202–3215

    Article  CAS  Google Scholar 

  43. Rybalka KV, Beketaeva LA, Davydov AD (2018) Effect of dissolved oxygen on the corrosion rate of stainless steel in a sodium chloride solution. Russ J Electrochem 54:1284–1287

    Article  CAS  Google Scholar 

  44. Lloyd AC, Noël JJ, McInture S, Shoesmith DW (2004) Cr, Mo, and W alloying additions in Ni and their effect on passivity. Electrochim Acta 49:3015–3027

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Ministry of Higher Education and Science of Russian Federation, Project N 10.4556.2017/6.7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kuznetsov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 226 kb)

ESM 2

(PDF 193 kb)

ESM 3

(PDF 245 kb)

ESM 4

(PDF 409 kb)

ESM 5

(PDF 148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, V.V., Vinokurov, E.G., Telezhkina, A.V. et al. Electrodeposition of corrosion-resistant Cr–P and Cr–P–W coatings from solutions based on compounds of trivalent chromium. J Solid State Electrochem 23, 2367–2376 (2019). https://doi.org/10.1007/s10008-019-04347-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04347-w

Keywords

Navigation