Skip to main content
Log in

Corrosion and Physical-Mechanical Properties of Cr–P–W Alloy Obtained by Electrodeposition from Water–Dimethylformamide Electrolytes

  • NEW SUBSTANCES, MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Cr–P–W protective coatings are obtained by electrodeposition from water–dimethylformamide solutions based on chromium(III) chloride, with the addition of sodium phosphinate and sodium tungstate. The resulting alloys contained up to 8 wt % of phosphorus and 1.5 wt % of tungsten, as well as some carbon. The resulting coatings are characterized by satisfactory corrosion resistance in corrosive environments containing chloride ions. The number of through pores in the coatings became negligible with a coating thickness more than 15 μm, providing sufficient protective ability of the developed coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Zhang, H., Liu, L., Bai, J., and Liu, Z., Thin Solid Films, 2015, vol. 395, pp. 36–40.

    Article  Google Scholar 

  2. Tharamani, C.N., Hoor, F.S., Begum, N.S., and Mayanna, S.N., J. Electrochem. Soc., 2006, vol. 153, pp. C164–C169.

    Article  CAS  Google Scholar 

  3. Surviliene, S., Cesuniene, A., Selskis, A., and Juskenas, R., Trans.Inst. Met. Finish., 2010, vol. 88, pp. 100–106.

    Article  CAS  Google Scholar 

  4. Sheu, H.-H., Lu, Ch.-E., Lee, H.-B., Pu, N.-W., Wu, P.-F., Hsieh, Sh.-H., and Ger, M.-D., J. Taiwan Inst. Chem. Eng., 2016, vol. 59, pp. 496–505.

    Article  CAS  Google Scholar 

  5. Kuznetsov, V.V. and Matveev, D.V., Russ. J. Electrochem., 2008, vol. 44, pp. 740–744.

    Article  CAS  Google Scholar 

  6. Kuznetsov, V.V., Pavlov, L.N., Vinokurov, E.G., Filatova, E.A., and Kudryavtsev, V.N., J. Solid State Electrochem., 2015, vol. 19, no. 9, pp. 2545–2553.

    Article  CAS  Google Scholar 

  7. Kuznetsov, V.V., Pavlov, L.N., Vinokurov, E.G., Filatova, E.A., and Kudryavtsev, V.N., Russ. J. Electrochem., 2015, vol. 51, pp. 174–179.

    Article  CAS  Google Scholar 

  8. Vinokurov, E.G., Antoshkin, M.K., and Kudryavtsev, V.N., Zavod. Lab., 1991, vol. 57, pp. 18–19.

    CAS  Google Scholar 

  9. Vinokurov, E.G., Kudryavtsev, V.N., and Bondar’, V.V., Zashch. Met., 1992, vol. 28, pp. 659–664.

    CAS  Google Scholar 

  10. Kuznetsov, V.V., Chepeleva, S.A., and Kodintsev, A.I., Usp. Khim. Khim. Tekhnol., 2000, vol. 14, p. 41.

    Google Scholar 

  11. Wienberg, J.H.O.J., Steegh, M., Aarnts, M.P., Lammers, K.R., and Mol, J.M.C., Electrochim. Acta, 2015, vol. 173, pp. 819–826.

    Article  Google Scholar 

  12. Lu, Ch.-E., Lee, J.-L., Sheu, H.-H., Hou, K.-H., Tseng, Ch.-Ch., and Ger, M.-D., Int. J. Electrochem. Sci., 2015, vol. 10, pp. 5405–5419.

    CAS  Google Scholar 

  13. Shluger, M.A. and Kabina, A.N., Gal’vanotekh.Obrab. Poverkhn., 1994, vol. 3, no. 4, pp. 11–15.

    CAS  Google Scholar 

  14. Tseluikin, V.N., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, pp. 254–266.

    Article  CAS  Google Scholar 

  15. Bakanov, V.I., Nesterova, N.V., and Yakupov, A.A., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, pp. 426–432.

    Article  CAS  Google Scholar 

  16. Vinokurov, E.G., Kuznetsov, V.V., and Bondar’, V.V., Russ. J. Coord. Chem., 2004, vol. 30, pp. 496–504.

    Article  CAS  Google Scholar 

  17. Kuznetsov, V.V., Vinokurov, E.G., and Kudryavtsev, V.N., Russ. J. Electrochem., 2000, vol. 36, pp. 756–760.

    Article  CAS  Google Scholar 

  18. Vinokurov, E.G., Prot. Met. Phys. Chem. Surf., 2010, vol. 46, pp. 615–619.

    Article  CAS  Google Scholar 

  19. Kuznetsov, V.V., Vinokurov, E.G., Azarko, O.E., and Kudryavtsev, V.N., Russ. J. Electrochem., 1999, vol. 35, pp. 698–699.

    CAS  Google Scholar 

  20. Zeng, Zh., Liang, A., and Zhang, J., Electrochim. Acta, 2008, vol. 53, pp. 7344–7349.

    Article  CAS  Google Scholar 

  21. Li, B., Lin, A., and Gan, F., Surf. Coat. Technol., 2006, vol. 201, pp. 2578–2586.

    Article  CAS  Google Scholar 

  22. Zhang, J., Gu, Ch., Tong, Y., Gou, J., Wang, X., and Tu, J., RSC Adv., 2015, vol. 5, pp. 71268–71277.

    Article  CAS  Google Scholar 

  23. Li, B., Lin, A., Wu, X., Zhang, Y., and Gan, F., J. Alloys Compd., 2008, vol. 453, pp. 93–101.

    Article  CAS  Google Scholar 

  24. Lin, L., Li, Y., and Wang, F., J. Mater. Sci. Technol., 2010, vol. 26, pp. 1–14.

    Article  Google Scholar 

  25. Kuznetsov, V.V., Telezhkina, A.V., Demakov, A.G., and Batalov, R.S., Gal’vanotekh.Obrab. Poverkhn., 2017, vol. 25, no. 1, pp. 16–22.

    Google Scholar 

  26. Losev, V.V. and Pchel’nikov, A.P., Itogi Nauki Tekh.,Ser.: Elektrokhim., 1979, vol. 15, p. 62.

    CAS  Google Scholar 

  27. El-Sharif, M., Watson, A., and Chisholm, C.U., Trans.Inst. Met. Finish., 1988, vol. 66, pp. 34–41.

    Article  CAS  Google Scholar 

  28. GOST (State Standard) no. 9.302-88: Unified System of Corrosion and Ageing Protection. Metal and Non-Metal Inorganic Coatings. Control Methods, Moscow: Izd. Standartov, 1990.

  29. Safonov, V.A., Vykhodtseva, L.N., Edigaryan, A.A., Aliev, A.D., Molodkina, E.B., Danilov, A.I., Lubnin, E.N., and Polukarov, Yu.M., Russ. J. Electrochem., 2001, vol. 37, pp. 127–134.

    Article  CAS  Google Scholar 

  30. Teterin, Yu.A., Sobolev, A.V., Presnyakov, I.A., Maslakov, K.A., Teterin, A.Yu., Morozov, I.V., Chernyavskii, I.O., Ivanov, K.E., and Shevel’kov, A.V., J. Exp. Theor. Phys.(JETP), 2017, vol. 151, pp. 251–260.

    Article  Google Scholar 

  31. McCafferty, E., Corros. Sci., 2005, vol. 47, p. 3202.

    Article  CAS  Google Scholar 

  32. Kuznetsov, V.V., Filatova, E.A., Telezhkina, A.V., and Kruglikov, S.S., J. Solid State Electrochem., 2018, vol. 22, pp. 2267–2276.

    Article  CAS  Google Scholar 

  33. Burstein, G.T. and Sazon, D., in Reference Module in Materials Science and Materials Engineering, Amsterdam: Elsevier, 2016. https://doi.org/10.1016/B978-0-12-803581-8.01589-7

    Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Education and Science of the Russian Federation under subsidy agreement no. 14.574.21.0169, unique work (project) identifier RFMEFI57417X0169.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Kuznetsov or N. E. Nekrasova.

Additional information

Translated by D. Kharitonov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telezhkina, A.V., Kuznetsov, V.V., Filatova, E.A. et al. Corrosion and Physical-Mechanical Properties of Cr–P–W Alloy Obtained by Electrodeposition from Water–Dimethylformamide Electrolytes. Prot Met Phys Chem Surf 55, 1134–1141 (2019). https://doi.org/10.1134/S2070205119060315

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119060315

Keywords:

Navigation