Skip to main content

Advertisement

Log in

Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode via wet-chemical coating of MgO

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

LiNi0.8Co0.1Mn0.1O2 (NCM811) has a high potential for using as the cathode material for lithium–ion batteries (LIBs) for electric vehicles owing to its high energy density and low cost. However, its poor rate capability and cycling performance have significantly hindered its application. In this study, we successfully design a uniform magnesium oxide (MgO) coating on NCM811 via a wet-chemical coating followed by heat treatment using magnesium ethoxide [Mg (OEt)2] dissolved in ethanol as the Mg source. The effects of MgO coating on the surface states, crystal structure, and electrochemical performances of NCM811 cathode material are studied in detail. After 100 cycles, the capacity retention of MgO-coated NCM811 is 90.1% at room temperature at 1 C, whereas the pristine NCM811 is only 74.5%. Besides, the MgO-coated NCM811 delivers a better rate property than pristine NCM811. Prominent improvements in electrochemical performances are attributed to the fact that the formation of MgO coating layer helps to suppress deleterious side reactions, lower the overpotential on the surface, and facilitate lithium–ion diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ye XC, Lin ZH, Liang SJ, Huang XH, Qiu XY, Qiu YC, Liu XM, Xie D, Deng H, Xiong XH, Lin Z (2019) Upcycling of electroplating sludge into ultrafine Sn@C nanorods with highly stable lithium storage performance. Nano Lett 19(3):1860–1866

    Article  CAS  PubMed  Google Scholar 

  2. Wang G, Xiong XH, Xie D, Fu XX, Ma XD, Li YP, Liu YZ, Lin Z, Yang CH, Liu ML (2019) Suppressing dendrite growth by a functional electrolyte additive for robust Li metal anodes. Energy Storage Mater. https://doi.org/10.1016/j.ensm.2019.02.026

  3. Wu L, Zheng J, Wang L, Xiong XH, Shao YY, Wang G, Wang JH, Zhong SK, Wu MH (2019) PPy-encapsulated SnS2 nanosheets stabilized by defects on a TiO2 support as a durable anode material for lithium-ion batteries. Angew Chem Int Ed 58(3):811–815

    Article  CAS  Google Scholar 

  4. Liu W, Oh P, Liu X, Lee MJ, Cho W, Chae S, Kim Y, Cho J (2015) Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chem Int Ed Engl 54(15):4440–4457

    Article  CAS  PubMed  Google Scholar 

  5. Kalluri S, Yoon M, Jo M, Liu HK, Dou SX, Cho J, Guo ZP (2017) Feasibility of cathode surface coating technology for high-energy lithium-ion and beyond-lithium-ion matteries. Adv Mater 29:1605807

    Article  CAS  Google Scholar 

  6. Schipper F, Bouzaglo H, Dixit M, Erickson EM, Weigel T, Talianker M, Grinblat J, Burstein L, Schmidt M, Lampert J, Erk C, Markovsky B, Major DT, Aurbach D (2018) From surface ZrO2 coating to bulk Zr doping by high temperature annealing of nickel-rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries. Adv Energy Mater 8:1701682

    Article  CAS  Google Scholar 

  7. Park KJ, Lim BB, Choi MH, Jung HG, Sun YK, Haro M, Vicente N, Bisquert J, Garcia-Belmonte GA (2015) High-capacity Li [Ni0.8Co0.06Mn0.14]O2 positive electrode with a dual concentration gradient for next-generation lithium-ion batteries. J Mater Chem A 3(44):22183–22190

    Article  CAS  Google Scholar 

  8. Liang C, Kong F, Longo RC, Kc S, Kim JS, Jeon S, Choi S, Cho K (2016) Unraveling the origin of instability in Ni-rich LiNi1–2xCoxMnxO2 (NCM) cathode materials. J Phys Chem C 120(12):6383–6393

    Article  CAS  Google Scholar 

  9. Lu XB, Li XH, Wang ZX, Guo HJ, Yan GC, Yin XA (2014) Modified co-precipitation process to coat LiNi1/3Co1/3Mn1/3O2 onto LiNi0.8Co0.1Mn0.1O2 for improving the electrochemical performance. Appl Surf Sci 297:182–187

    Article  CAS  Google Scholar 

  10. Li GY, Zhang ZJ, Huang ZL, Yang CK, Zuo ZC, Zhou HH (2016) Understanding the accumulated cycle capacity fade caused by the secondary particle fracture of LiNi1-x-yCoxMnyO2 cathode for lithium ion batteries. J Solid State Electrochem 21:673–682

    Article  CAS  Google Scholar 

  11. Kondrakov AO, Geßwein H, Galdina K, de Biasi L, Meded V, Filatova EO, Schumacher G, Wenzel W, Hartmann P, Brezesinski T, Janek J (2017) Charge-transfer-induced lattice collapse in Ni-rich NCM cathode materials during delithiation. J Phys Chem C 121(44):24381–24388

    Article  CAS  Google Scholar 

  12. Kondrakov AO, Schmidt A, Xu J, Geßwein H, Mönig R, Hartmann P, Sommer H, Brezesinski T, Janek J (2017) Anisotropic lattice strain and mechanical degradation of high- and low-nickel NCM cathode materials for li-ion batteries. J Phys Chem C 121(6):3286–3294

    Article  CAS  Google Scholar 

  13. Zhu J, Li YJ, Xue LL, Chen YX, Lei TX, Deng SY, Cao GL (2018) Enhanced electrochemical performance of Li3PO4 modified Li [Ni0.8Co0.1Mn0.1]O2 cathode material via lithium-reactive coating. J Alloy Compd 773:112–120

    Article  CAS  Google Scholar 

  14. Vu DL, Lee JW (2018) Na-doped layered LiNi0.8Co0.1Mn0.1O2 with improved rate capability and cycling stability. J Solid State Electrochem 22(4):1165–1173

    Article  CAS  Google Scholar 

  15. Abe M, Iba H, Suzuki K, Minamishima H, Hirayama M, Tamura K, Mizuki J, Saito T, Ikuhara Y, Kanno R (2017) Study on the deterioration mechanism of layered rock-salt electrodes using epitaxial thin films – Li (Ni, Co, Mn)O2 and their Zr-O surface modified electrodes. J Power Sources 345:108–119

    Article  CAS  Google Scholar 

  16. Song HG, Park KS, Park YJ (2012) The effects of LaPO4 coating on the electrochemical properties of Li [Ni0.5Co0.2Mn0.3]O2 cathode material. Solid State Ionics 225:532–537

    Article  CAS  Google Scholar 

  17. Jin D, Song D, Friesen A, Lee YM, Ryou MH (2018) Effect of Al2O3 ceramic fillers in LiNi1/3Co1/3Mn1/3O2 cathodes for improving high-voltage cycling and rate capability performance. Electrochim Acta 259:578–586

    Article  CAS  Google Scholar 

  18. Shao Z, Zhao Z, Zhang Y (2015) Preparation and properties of ZnO, MgO and Al2O3 coated LiNi1/3Co1/3 − xMn1/3MxO2 (x = 10%) cathode materials. Mater Technol 30:344–348

    Article  CAS  Google Scholar 

  19. Zhou AJ, Liu Q, Wang Y, Wang WH, Yao X, Hu WT, Zhang L, Yu XQ, Li JZ, Li H (2017) Al2O3 surface coating on LiCoO2 through a facile and scalable wet-chemical method towards high-energy cathode materials withstanding high cutoff voltages. J Mater Chem A 5(46):24361–24370

    Article  CAS  Google Scholar 

  20. Liu Q, Du K, Hu GR, Peng ZD, Cao YB, Liu WM (2012) Characterization of LiNi0.9Co0.05[Mn1/2Mg1/2]0.05O2 solid solution for secondary lithium ion batteries. Solid State Ionics 227:23–29

    Article  CAS  Google Scholar 

  21. Laskar MR, Jackson DH, Xu S, Hamers RJ, Morgan D, Kuech TF (2017) Atomic layer deposited MgO: a lower overpotential coating for Li [Ni0.5Mn0.3Co0.2]O2 cathode. ACS Appl Mater Interfaces 9(12):11231–11239

    Article  CAS  PubMed  Google Scholar 

  22. Gao S, Zhan XW, Cheng YT (2019) Structural, electrochemical and Li-ion transport properties of Zr-modified LiNi0.8Co0.1Mn0.1O2 positive electrode materials for Li-ion batteries. J Power Sources 410-411:45–52

    Article  CAS  Google Scholar 

  23. Li L, Chen Z, Zhang Q, Xu M, Zhou X, Zhu H, Zhang K (2015) A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium ion batteries. J Mater Chem A 3(2):894–904

    Article  CAS  Google Scholar 

  24. Xiong XH, Ding D, Bu YF, Wang ZX, Huang B, Guo HJ, Li XH (2014) Enhanced electrochemical properties of a LiNiO2-based cathode material by removing lithium residues with (NH4)2HPO4. J Mater Chem A 2(30):11691–11696

    Article  CAS  Google Scholar 

  25. Yang HP, Wu HH, Ge MY, Li LJ, Yuan YF, Yao Q, Chen J, Xia LF, Zheng JM, Chen ZY, Duan JF, Kisslinger K, Zeng CX, Lee WK, Zhang QB, Lu J (2019) Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries. Adv Funct Mater 1808825

  26. Zheng JC, Yang Z, He ZJ, Tong H, Yu WJ, Zhang JF (2018) In situ formed LiNi0.8Co0.15Al0.05O2@Li4SiO4 composite cathode material with high rate capability and long cycling stability for lithium-ion batteries. Nano Energy 53:613–621

    Article  CAS  Google Scholar 

  27. Lim BB, Myung ST, Yoon CS, Sun YK (2016) Comparative study of Ni-rich layered cathodes for rechargeable lithium batteries: Li [Ni0.85Co0.11Al0.04]O2 and Li [Ni0.84Co0.06Mn0.09Al0.01]O2 with two-step full concentration gradients. ACS Energy Lett 1(1):283–289

    Article  CAS  Google Scholar 

  28. Ding Y, Deng BW, Wang H, Li X, Chen T, Yan XX, Wan Q, Qu MZ, Peng GC (2019) Improved electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode material by reducing lithium residues with the coating of Prussian blue. J Alloy Compd 774:451–460

    Article  CAS  Google Scholar 

  29. Zheng XB, Li XH, Zhang B, Wang ZX, Guo HJ, Huang ZJ, Yan GC, Wang D, Xu Y (2016) Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode materials obtained by atomization co-precipitation method. Ceram Int 42(1):644–649

    Article  CAS  Google Scholar 

  30. Lv CJ, Yang J, Peng Y, Duan XC, Ma JM, Li QH, Wang TH (2019) 1D Nb-doped LiNi1/3Co1/3Mn1/3O2 nanostructures as excellent cathodes for Li-ion battery. Electrochim Acta 297:258–266

    Article  CAS  Google Scholar 

  31. Zheng FH, Yang CH, Xiong XH, Xiong JW, Hu RZ, Chen Y, Liu ML (2015) Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew Chem Int Ed 54(44):13058–13062

    Article  CAS  Google Scholar 

  32. Aykol M, Kirklin S, Wolverton C (2014) Thermodynamic aspects of cathode coatings for lithium-ion batteries. Adv Energy Mater 4(17):1400690

    Article  CAS  Google Scholar 

  33. Mezaal MA, Qu LM, Li GH, Liu W, Zhao XY, Fan ZZ, Lei LX (2017) High energy density and lofty thermal stability nickel-rich materials for positive electrode of lithium ion batteries. J Solid State Electrochem 21(8):2219–2229

    Article  CAS  Google Scholar 

  34. Li X, Zhang KJ, Wang MS, Liu Y, Qu MZ, Zhao WJ, Zheng JM (2018) Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2. Sustain Energy Fuels 2(2):413–421

    Article  CAS  Google Scholar 

  35. Li LJ, Chen ZY, Long XB, Jin WF, Xia Q (2013) Synthesis of cation-substituted LiNi0.8Co0.1Mn0.1O2 from laterite. Ionics 19(9):1215–1222

    Article  CAS  Google Scholar 

  36. Liu W, Li XF, Xiong DB, Hao YC, Li JW, Kou H, Yan B, Li D, Lu S (2018) Significantly improving cycling performance of cathodes in lithium ion batteries: the effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. Nano Energy 44:111–120

    Article  CAS  Google Scholar 

  37. Yang ZG, Guo XD, Xiang W, Hua WB, Zhang J, He FR, Wang K, Xiao Y, Zhong BH (2017) K-doped layered LiNi0.5Co0.2Mn0.3O2 cathode material: towards the superior rate capability and cycling performance. J Alloy Compd 699:358–365

    Article  CAS  Google Scholar 

  38. Yuan J, Wen JW, Zhang JB, Chen DM, Zhang DW (2017) Influence of calcination atmosphere on structure and electrochemical behavior of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries. Electrochim Acta 230:116–122

    Article  CAS  Google Scholar 

  39. Hu WQ, Zhang CH, Jiang H, Zheng MS, Wu QH, Dong QF (2017) Improving the electrochemistry performance of layer LiNi0.5Mn0.3Co0.2O2 material at 4.5 V cutoff potential using lithium metaborate. Electrochim Acta 243:105–111

    Article  CAS  Google Scholar 

  40. Kim D, Lim JM, Lim YG, Yu JS, Park MS, Cho M, Cho K (2015) Design of nickel-rich layered oxides using d electronic donor for redox reactions. Chem Mater 27(18):6450–6456

    Article  CAS  Google Scholar 

  41. Huang ZJ, Wang ZX, Zheng XB, Guo HJ, Li XH, Jing Q, Yang ZH (2015) Structural and electrochemical properties of Mg-doped nickel based cathode materials LiNi0.6Co0.2Mn0.2−xMgxO2 for lithium ion batteries. RSC Adv 5(108):88773–88779

    Article  CAS  Google Scholar 

  42. Cheng KL, Mu DB, Wu BR, Wang L, Jiang Y, Wang R (2017) Electrochemical performance of a nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries under different cut-off voltages. Inter J Miner Metall Mater 24(3):342–351

    Article  CAS  Google Scholar 

  43. Wang XY, Hao H, Liu JL, Huang T, Yu AS (2011) A novel method for preparation of macroporous lithium nickel manganese oxygen as cathode material for lithium ion batteries. Electrochim Acta 56(11):4065–4069

    Article  CAS  Google Scholar 

  44. Zhu CJ, Chen J, Liu SS, Cheng BM, Xu Y, Zhang PW, Zhang Q, Li YT, Zhong SW (2017) Improved electrochemical performance of bagasse and starch-modified LiNi0.5Mn0.3Co0.2O2 materials for lithium-ion batteries. J Mater Sci 53:5242–5254

    Article  CAS  Google Scholar 

  45. Wang M, Luo M, Chen YB, Su YF, Chen L, Zhang R (2017) Electrochemical deintercalation kinetics of 0.5Li2MnO3·0.5LiNi1/3Mn1/3Co1/3O2 studied by EIS and PITT. J Alloy Compd 696:907–913

    Article  CAS  Google Scholar 

  46. Ran QW, Zhao HY, Hu YZ, Shen QQ, Liu W, Liu JT, Shu XH, Zhang ML, Liu SS, Tan M, Li H, Liu XQ (2018) Enhanced electrochemical performance of dual-conductive layers coated Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode for Li-ion batteries at high cut-off voltage. Electrochim Acta 289:82–93

    Article  CAS  Google Scholar 

  47. Li X, Zhang KJ, Wang SY, Wang MS, Jiang F, Liu Y, Huang Y, Zheng JM (2018) Optimal synthetic conditions for a novel and high performance Ni-rich cathode material of LiNi0.68Co0.10Mn0.22O2. Sustain Energy Fuels 2(8):1772–1780

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Service Network Plan of the Chinese Academy of Sciences (Grant No. KFJ-STS-ZDTP-040), the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-JSC021), and the Key Research Program of the Chinese Academy of Sciences (Grant No. ZDRW-ZS-2018-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingkui Qu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 13547 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, F., Wu, Y., Wei, G. et al. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode via wet-chemical coating of MgO. J Solid State Electrochem 23, 2213–2224 (2019). https://doi.org/10.1007/s10008-019-04308-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04308-3

Keywords

Navigation