Skip to main content
Log in

Investigations on the reversible heat generation rates of blended Li-insertion electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Recently, considerable improvements regarding the electrochemical performance of cathodes for lithium-ion batteries have been achieved by combining multiple lithium insertion compounds with complementary advantageous properties in one electrode. Herein, reversible heat generation rates of blended insertion electrodes are systematically investigated by temperature-dependent measurements of the equilibrium potential. The results are compared to theoretical predictions showing excellent agreement. Both the reversible heat profile and the corresponding dissipated heat significantly depend on the type and mass ratio of the constituents of the blend. The results indicate that reversible heat profiles of blended electrodes can be tailored to a certain extent by the targeted compilation of the active material mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chikkannanavar SB, Bernardi DM, Liu L (2014) A review of blended cathode materials for use in Li-ion batteries. J Power Sources 248:91–100

    Article  CAS  Google Scholar 

  2. Heubner C, Liebmann T, Schneider M, Michaelis A (2018) Recent insights into the electrochemical behavior of blended lithium insertion cathodes: a review. Electrochim Acta 269:745–760

    Article  CAS  Google Scholar 

  3. Albertus P, Christensen J, Newman J (2009) Experiments on and modeling of positive electrodes with multiple active materials for lithium-ion batteries. J Electrochem Soc 156(7):A606–A618

    Article  CAS  Google Scholar 

  4. Gallagher KG, Kang S-H, Park SU, Han SY (2011) xLi2MnO3·(1−x)LiMO2 blended with LiFePO4 to achieve high energy density and pulse power capability. J Power Sources 196(22):9702–9707

    Article  CAS  Google Scholar 

  5. Appiah WA, Park J, van Khue L, Lee Y, Choi J, Ryou MH, Lee YM (2016) Comparative study on experiments and simulation of blended cathode active materials for lithium ion batteries. Electrochim Acta 187:422–432

    Article  CAS  Google Scholar 

  6. Whitacre JF, Zaghib K, West WC, Ratnakumar BV (2008) Dual active material composite cathode structures for Li-ion batteries. J Power Sources 177(2):528–536

    Article  CAS  Google Scholar 

  7. Lee K-S, Myung S-T, Kim D-W, Sun YK (2011) AlF3-coated LiCoO2 and Li[Ni1/3Co1/3Mn1/3]O2 blend composite cathode for lithium ion batteries. J Power Sources 196(16):6974–6977

    Article  CAS  Google Scholar 

  8. Tran HY, Täubert C, Fleischhammer M et al (2011) LiMn2O4 spinel/LiNi0.8Co0.15Al0.05O2 blends as cathode materials for lithium-ion batteries. J Electrochem Soc 158(5):A556–A561

  9. Jeong SK, Shin JS, Nahm KS, Prem Kumar T, Stephan AM (2008) Electrochemical studies on cathode blends of LiMn2O4 and Li[Li1/15Ni1/5Co2/5Mn1/3O2]. Mater Chem Phys 111(2-3):213–217

    Article  CAS  Google Scholar 

  10. Gao J, Manthiram A (2009) Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts. J Power Sources 191(2):644–647

    Article  CAS  Google Scholar 

  11. Lee ES, Manthiram A (2011) High capacity Li [Li0. 2Mn0. 54Ni0. 13Co0.13] O2–VO2 (B) composite cathodes with controlled irreversible capacity loss for lithium-ion batteries. J Electrochem Soc 158(1):A47–A50

  12. Smith AJ, Smith SR, Byrne T, Burns JC, Dahn JR (2012) Synergies in blended LiMn2O4 and Li[Ni1/3Mn1/3Co1/3]O2 positive electrodes. J Electrochem Soc 159(10):A1696–A1701

    Article  CAS  Google Scholar 

  13. Klein A, Axmann P, Wohlfahrt-Mehrens M (2016) Synergetic effects of LiFe0.3Mn0.7PO4–LiMn1.9Al0.1O4 blend electrodes. J Power Sources 309:169–177

    Article  CAS  Google Scholar 

  14. Heubner C, Lämmel C, Schneider M, Michaelis A (2017) Temperature induced compositional redistribution in blended insertion electrodes. J Power Sources 344:170–175

    Article  CAS  Google Scholar 

  15. Bandhauer TM, Garimella S, Fuller TF (2011) A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc 158(3):R1

    Article  CAS  Google Scholar 

  16. Maleki H, Deng G, Anani A et al (1999) Thermal stability studies of Li-ion cells and components. J Electrochem Soc 146(9):3224–3229

    Article  CAS  Google Scholar 

  17. Spotnitz R, Franklin J (2003) Abuse behavior of high-power, lithium-ion cells. J Power Sources 113(1):81–100

    Article  CAS  Google Scholar 

  18. Wang Q, Ping P, Zhao X et al (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224

    Article  CAS  Google Scholar 

  19. Bandhauer TM, Garimella S, Fuller TF (2014) Temperature-dependent electrochemical heat generation in a commercial lithium-ion battery. J Power Sources 247:618–628

    Article  CAS  Google Scholar 

  20. Heubner C, Schneider M, Michaelis A (2016) Detailed study of heat generation in porous LiCoO2 electrodes. J Power Sources 307:199–207

    Article  CAS  Google Scholar 

  21. Thomas KE, Newman J (2003) Heats of mixing and of entropy in porous insertion electrodes. J Power Sources 119–121:844–849

    Article  Google Scholar 

  22. Bernardi D, Pawlikowski E, Newman J (1985) A general energy balance for battery systems. J Electrochem Soc 132(1):5–12

    Article  CAS  Google Scholar 

  23. Gu WB, Wang CY (2000) Thermal-electrochemical modeling of battery systems. J Electrochem Soc 147(8):2910

    Article  CAS  Google Scholar 

  24. Thomas KE, Bogatu C, Newman J (2001) Measurement of the entropy of reaction as a function of state of charge in doped and undoped lithium manganese oxide. J Electrochem Soc 148(6):A570–A575

    Article  CAS  Google Scholar 

  25. Lu W, Belharouak I, Park SH, Sun YK, Amine K (2007) Isothermal calorimetry investigation of Li1+xMn2−yAlzO4 spinel. Electrochim Acta 52(19):5837–5842

    Article  CAS  Google Scholar 

  26. Eddahech A, Briat O, Vinassa J-M (2013) Thermal characterization of a high-power lithium-ion battery: potentiometric and calorimetric measurement of entropy changes. Energy 61:432–439

    Article  CAS  Google Scholar 

  27. Williford RE, Viswanathan VV, Zhang J-G (2009) Effects of entropy changes in anodes and cathodes on the thermal behavior of lithium ion batteries. J Power Sources 189(1):101–107

    Article  CAS  Google Scholar 

  28. Viswanathan VV, Choi D, Wang D, Xu W, Towne S, Williford RE, Zhang JG, Liu J, Yang Z (2010) Effect of entropy change of lithium intercalation in cathodes and anodes on Li-ion battery thermal management. J Power Sources 195(11):3720–3729

    Article  CAS  Google Scholar 

  29. Hong J, Maleki H, Al Hallaj S et al (1998) Electrochemical-calorimetric studies of lithium-ion cells. J Electrochem Soc 145(5):1489–1501

    Article  CAS  Google Scholar 

  30. Al Hallaj S, Prakash J, Selman JR (2000) Characterization of commercial Li-ion batteries using electrochemical–calorimetric measurements. J Power Sources 87(1-2):186–194

    Article  Google Scholar 

  31. Huang J, Li Z, Liaw BY, Wang Z, Song S, Wu N, Zhang J (2015) Entropy coefficient of a blended electrode in a lithium-ion cell. J Electrochem Soc 162(12):A2367–A2371

    Article  CAS  Google Scholar 

  32. Ohzuku T, Kitagawa M, Hirai T (1990) Electrochemistry of manganese dioxide in lithium nonaqueous cell III. X-ray diffractional study on the reduction of spinel-related manganese dioxide. J Electrochem Soc 137(3):769–775

    Article  CAS  Google Scholar 

  33. Heubner C, Schneider M, Michaelis A (2017) Reversible heat generation rates of blended insertion electrodes. J Solid State Electrochem 21(7):2109–2115

    Article  CAS  Google Scholar 

  34. Heubner C, Liebmann T, Lämmel C, Schneider M, Michaelis A (2018) Deconvolution of cyclic voltammograms for blended lithium insertion compounds by using a model-like blend electrode. ChemElectroChem 5(3):425–428

    Article  CAS  Google Scholar 

  35. Reimers JN, Dahn JR (1992) Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J Electrochem Soc 139(8):2091–2097

    Article  CAS  Google Scholar 

  36. Reynier Y, Graetz J, Swan-Wood T, Rez P, Yazami R, Fultz B (2004) Entropy of Li intercalation in LixCoO2. Phys Rev B 70(17):174304

    Article  Google Scholar 

  37. Kobayashi Y, Mita Y, Seki S, Ohno Y, Miyashiro H, Nakayama M, Wakihara M (2008) Configurational entropy of lithium manganese oxide and related materials, LiCryMn2−yO4 (y= 0, 0.3). J Electrochem Soc 155(1):A14–A19

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Heubner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liebmann, T., Heubner, C., Schneider, M. et al. Investigations on the reversible heat generation rates of blended Li-insertion electrodes. J Solid State Electrochem 23, 245–250 (2019). https://doi.org/10.1007/s10008-018-4127-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4127-4

Keywords

Navigation