Skip to main content
Log in

Microwave-assisted synthesis of Fe-doped NiMnO3 as electrode material for high-performance supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Fe-doped NiMnO3 nanosheet electrode material was successfully synthesized by convenient and efficient microwave-assisted hydrothermal method. The crystal structure, chemical composition, morphology, and specific surface area of the electrode material were analyzed by X-ray diffraction, Fourier transform infrared, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and Brunner–Emmet–Teller testing. Results showed that Fe doping changed not only the crystal structure but also the morphology of the NiMnO3 nanosheet electrode material. Moreover, the electrode material exhibited a high specific surface area and outstanding conductivity. Electrochemical performance was analyzed by cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy. The outcome of these experiments demonstrated that the Fe-doped NiMnO3 electrode material exhibited optimum electrochemical performance when the mass ratio was 15 wt%. The specific capacitance reached 732.7 F g−1 at a current density of 1 A g−1, and capacitance retention was approximately 78.3% after 10,000 cycles at 3 A g−1. The Fe-doped NiMnO3 electrode material is thus a promising next-generation supercapacitor material because of its high specific capacitance and long cycle life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig 9

Similar content being viewed by others

References

  1. Aricò AS, Bruce P, Scrosati B, Tarascon JM, Van SW (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377

    Article  CAS  PubMed  Google Scholar 

  2. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321(5889):651–652

    Article  CAS  PubMed  Google Scholar 

  3. Dubal DP, Gomez-Romero P, Sankapal BR, Holze R (2015) Nickel cobaltite as an emerging material for supercapacitors: an overview. Nano Energy 11:377–399

    Article  CAS  Google Scholar 

  4. Umeshbabu E, Rajeshkhanna G, Justin P, Rao GR (2015) Synthesis of mesoporous NiCo2O4-rGO by solvothermal method for charge storage applications. RSC Adv 5(82):66657–66666

    Article  CAS  Google Scholar 

  5. Chen Q, Meng Y, Hu C, Zhao Y, Shao H, Chen N, Qu L (2014) MnO2-modified hierarchical graphene fiber electrochemical supercapacitor. J Power Sources 247:32–39

    Article  CAS  Google Scholar 

  6. Fu Y, Cai X, Wu H, Lv Z, Hou S, Peng M, Yu X, Zou D (2012) Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv Mater 24(42):5713–5718

    Article  CAS  PubMed  Google Scholar 

  7. Yu C, Masarapu C, Rong J, Wei B, Jiang H (2010) Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms. Adv Mater 21:4793–4797

    Article  CAS  Google Scholar 

  8. Lu X, Yu M, Zhai T, Wang G, Xie S, Liu T, Liang C, Tong Y, Li Y (2013) High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett 13(6):2628–2633

    Article  CAS  PubMed  Google Scholar 

  9. Huang ZD, Zhang B, Oh SW, Zheng QB, Lin XY, Yousefi N, Kim JK (2012) Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors. J Mater Chem 22(8):3591–3599

    Article  CAS  Google Scholar 

  10. Ramya R, Sivasubramanian R, Sangaranarayanan MV (2013) Conducting polymers-based electrochemical supercapacitors—Progress and prospects. Electrochim Acta 101:109–129

    Article  CAS  Google Scholar 

  11. Gao X, Zhang Y, Huang M, Li F, Hua C, Yu L, Zheng H (2014) Facile synthesis of Co3O4@NiCo2O4 core–shell arrays on Ni foam for advanced binder-free supercapacitor electrodes. Ceram Int 40(10):15641–15646

    Article  CAS  Google Scholar 

  12. Kang J, Hirata A, Kang L, Zhang X, Hou Y, Chen L, Li C, Fujita T, Akagi K, Chen M (2013) Enhanced supercapacitor performance of MnO2 by atomic doping. Angew Chemie 52(6):1664–1667

    Article  CAS  Google Scholar 

  13. Cai G, Tu J, Zhou D, Zhang J, Xiong Q, Zhao X, Wang X, Gu C (2013) Multicolor electrochromic film based on TiO2@polyaniline core/shell nanorod array. J Phys Chem C 117(31):15967–15975

    Article  CAS  Google Scholar 

  14. Zhou C, Zhang Y, Li Y, Liu J (2013) Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13(5):2078–2085

    Article  CAS  PubMed  Google Scholar 

  15. Tian W, Wang X, Zhi C, Zhai T, Liu D, Zhang C, Golberg D, Bando Y (2013) Ni(OH)2 nanosheet@Fe2O3 nanowire hybrid composite arrays for high-performance supercapacitor electrodes. Nano Energy 2(5):754–763

    Article  CAS  Google Scholar 

  16. Zhang X, Shi W, Zhu J, Zhao W, Ma J, Mhaisalkar S, Maria TL, Yang Y, Zhang H, Hng HH (2010) Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res 3(9):643–652

    Article  CAS  Google Scholar 

  17. Xiao Y, Liu S, Feng L, Zhang A, Zhao J, Fang S, Jia D (2012) 3D Hierarchical Co3O4 Twin-Spheres with an Urchin-Like Structure: Large-scale synthesis, multistep-splitting growth, and electrochemical pseudocapacitors. Adv Funct Mater 22:4052–4059

    Article  CAS  Google Scholar 

  18. Du W, Liu R, Jiang Y, Lu Q, Fan Y, Gao F (2013) Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor. J Power Sources 227:101–105

    Article  CAS  Google Scholar 

  19. Saravanakumar B, Purushothaman KK, Muralidharan G (2012) Interconnected V2O5 nanoporous network for high-performance supercapacitors. ACS Appl Mater Interfaces 4(9):4484–4490

    Article  CAS  PubMed  Google Scholar 

  20. Wee G, Soh HZ, Yan LC, Mhaisalkar SG, Srinivasan M (2010) Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes. J Mater Chem 20(32):6720–6725

    Article  CAS  Google Scholar 

  21. Kulal PM, Dubal DP, Lokhande CD, Fulari VJ (2011) Chemical synthesis of Fe2O3 thin films for supercapacitor application. J Alloys Compd 509(5):2567–2571

    Article  CAS  Google Scholar 

  22. Zhu Y, Wu Z, Jing M, Hou H, Yang Y, Zhang Y, Yang X, Song W, Jia X, Ji X (2014) Porous NiCo2O4 spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor. J Mater Chem A 3:866–877

    Article  CAS  Google Scholar 

  23. Wang C, Zhou E, He W, Deng X, Huang J, Ding M, Wei X, Liu X, Xu X (2017) NiCo2O4-based supercapacitor nanomaterials. Nanomaterials 7:41

    Article  CAS  PubMed Central  Google Scholar 

  24. Zhang G, Lou XW (2013) General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv Mater 25(7):975–975

    Article  CAS  Google Scholar 

  25. Tholkappiyan R, Naveen AN, Sumithra S, Vishista K (2015) Investigation on spinel MnCo2O4 electrode material prepared via controlled and uncontrolled synthesis route for supercapacitor application. J Mater Sci 50(17):5833–5843

    Article  CAS  Google Scholar 

  26. Che H, Liu A, Mu J, Wu C, Zhang X (2016) Template-free synthesis of novel flower-like MnCo2O4 hollow microspheres for application in supercapacitors. Ceram Int 42(2):2416–2424

    Article  CAS  Google Scholar 

  27. Karthikeyan K, Kalpana D, Renganathan NG (2009) Synthesis and characterization of ZnCo2O4 nanomaterial for symmetric supercapacitor applications. Ionics 15(1):107–110

    Article  CAS  Google Scholar 

  28. Guan B, Guo D, Hu L, Zhang G, Fu T, Ren W, Li J, Li Q (2014) Facile synthesis of ZnCo2O4 nanowire cluster arrays on Ni foam for high-performance asymmetric supercapacitors. J Mater Chem A 2(38):16116–16123

    Article  CAS  Google Scholar 

  29. Cai D, Wang D, Liu B, Wang Y, Liu Y, Wang L, Li H, Huang H, Li Q, Wang T (2013) Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres for supercapacitor applications. Appl Mater Interfaces 5(24):12905–12910

    Article  CAS  Google Scholar 

  30. Xiao J, Wan L, Yang S, Xiao F, Wang S (2014) Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 14(2):831–838

    Article  CAS  PubMed  Google Scholar 

  31. Kakvand P, Rahmanifar MS, El-Kady MF, Pendashteh A, Kiani MA, Hashami M, Najafi M, Abbasi A, Mousavi MF, Kaner RB (2016) Synthesis of NiMnO3/C nano-composite electrode materials for electrochemical capacitors. Nanotechnol 27(31):315401

    Article  CAS  Google Scholar 

  32. Mehandjiev D, Naydenov A, Ivanov G (2001) Ozone decomposition, benzene and co oxidation over NiMnO3-ilmenite and NiMn2O4-spinel catalysts. Appl Catal A 206(1):13–18

    Article  CAS  Google Scholar 

  33. Lassoued A, Lassoued MS, Dkhil B, Ammar S, Gadri A (2018) Synthesis, structural, morphological, optical and magnetic characterization of iron oxide (α-Fe2O3 ) nanoparticles by precipitation method: effect of varying the nature of precursor. Phys E (Amsterdam Neth) 97:328–334

    Article  CAS  Google Scholar 

  34. Guan Y, Yin C, Cheng X, Liang X, Diao Q, Zhang H, Lu G (2014) Sub-ppmH2S sensor based on YSZ and hollow balls NiMn2O4 sensing electrode. Sensors Actuators B Chem 193:501–508

    Article  CAS  Google Scholar 

  35. Chen Y, Ni D, Yang X, Liu C, Yin J, Cai K (2018) Microwave-assisted synthesis of honeycomblike hierarchical spherical Zn-doped Ni-MOF as a high-performance battery-type supercapacitor electrode material. Electrochim Acta 278:114–123

    Article  CAS  Google Scholar 

  36. Zhang M, Guo S, Zheng L, Zhang G, Hao Z, Kang L, Liu ZH (2013) Preparation of NiMn2O4 with large specific surface area from an epoxide-driven sol−gel process and its capacitance. Electrochim Acta 87:546–553

    Article  CAS  Google Scholar 

  37. Li W, Cui X, Zeng R, Du G, Sun Z, Zheng R, Ringer SP, Dou SX (2015) Performance modulation of α-MnO2 nanowires by crystal facet engineering. Sci Rep 5(1):8987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254(8):2441–2449

    Article  CAS  Google Scholar 

  39. Belous A, Kolbasov G, Kovalenko L, Boldyrev E, Kobylianska S, Liniova B (2018) All solid-state battery based on ceramic oxide electrolytes with perovskite and NASICON structure. J Solid State Electrochem 22(8):2315–2320

    Article  CAS  Google Scholar 

  40. Wang L, Wang X, Xiao X, Xu F, Sun Y, Li Z (2013) Reduced graphene oxide/nickel cobaltite nanoflake composites for high specific capacitance supercapacitors. Electrochim Acta 111:937–945

    Article  CAS  Google Scholar 

  41. Patil AM, Lokhande AC, Chodankar NR, Kumbhar VS, Lokhande CD (2016) Engineered morphologies of β-NiS thin films via anionic exchange process and their supercapacitive performance. Mater Des 97:407–416

    Article  CAS  Google Scholar 

  42. Li B, Xiao Z, Chen M, Huang Z, Tie X, Zai J, Qian X (2017) Rice husk-derived hybrid lithium-ion capacitors with ultra-high energy. J Mater Chem A 5(46):24502–24507

    Article  CAS  Google Scholar 

  43. Fang Z, Peng L, Qian Y, Zhang X, Xie Y, Cha JJ et al (2018) Dual tuning of ni-co-a (a = p, se, o) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. J Am Chem Soc 140:15

    Google Scholar 

  44. Chen M, Li B, Liu X, Zhou L, Yao L, Zai J, … & Yu X (2018) Boron-doped porous Si anode materials with high initial coulombic efficiency and long cycling stability. J Mater Chem A 6(7): 3022–3027

Download references

Funding

This work was financially supported by the National Key Research and Development Program of China (2016YFB0101206) and the Dalian Science and Technology Innovation Funds (2018J12GX053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naibao Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, S., Huang, N., Zhang, J. et al. Microwave-assisted synthesis of Fe-doped NiMnO3 as electrode material for high-performance supercapacitors. J Solid State Electrochem 23, 63–72 (2019). https://doi.org/10.1007/s10008-018-4115-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4115-8

Keywords

Navigation