Skip to main content
Log in

Improving the rate and low-temperature performance of LiFePO4 by tailoring the form of carbon coating from amorphous to graphene-like

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A solid-state reaction process with poly(vinyl alcohol) as the carbon source is developed to synthesize LiFePO4-based active powders with or without modification assistance of a small amount of Li3V2(PO4)3. The samples are analyzed by X-ray diffraction, scanning/transmission electron microscopy, and Raman spectroscopy. It is found that, in addition to the minor effect of a lattice doping in LiFePO4 by substituting a tiny fraction of Fe2+ ions with V3+ ions, the change in the form of carbon coating on the surface of LiFePO4 plays a more important role to improve the electrochemical properties. The carbon changes partially from sp3 to sp2 hybridization and thus causes the significant rise in electronic conductivity in the Li3V2(PO4)3-modified LiFePO4 samples. Compared with the carbon-coated baseline LiFePO4, the composite material 0.9LiFePO4·0.1Li3V2(PO4)3 shows totally different carbon morphology and much better electrochemical properties. It delivers specific capacities of 143.6 mAh g−1 at 10 C rate and 119.2 mAh g−1 at 20 C rate, respectively. Even at the low temperature of −20 °C, it delivers a specific capacity of 118.4 mAh g−1 at 0.2 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswarmy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  2. Okada S, Sawa S, Egashira M, Yamaki JI, Tabuchi M, Kageyama H, Konishi T, Yoshino A (2001) Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries. J Power Sources 97-98:430–432

    Article  CAS  Google Scholar 

  3. Delacourt C, Poizot P, Morcrette M, Tarascon JM, Masquelier C (2004) One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders. Chem Mater 16:93–99

    Article  CAS  Google Scholar 

  4. Yamada A, Hosoya M, Chung SC, Kudo Y, Hinokuma K, Liu KY, Nishi Y (2003) Olivine-type cathodes: achievements and problems. J Power Sources 119-121:232–238

    Article  CAS  Google Scholar 

  5. Li G, Azuma H, Tohda M (2002) LiMnPO4 as the cathode for lithium batteries. Electrochem Solid State Lett 5:A135–A137

    Article  CAS  Google Scholar 

  6. Yang J, Xu JJ (2006) Synthesis and characterization of carbon-coated lithium transition metal phosphates LiMPO4 (M= Fe, Mn, Co, Ni) prepared via a nonaqueous sol-gel route. J Electrochem Soc 153:A716–A723

    Article  CAS  Google Scholar 

  7. Sturaa E, Nicolini C (2006) New nanomaterials for light weight lithium batteries. Anal Chim Acta 568:57–64

    Article  Google Scholar 

  8. Ding B, Xiao PF, Ji G, Ma Y, Lu L, Lee JY (2013) High-performance lithium-ion cathode LiMn0.7Fe0.3PO4/C and the mechanism of performance enhancements through Fe substitution. ACS Appl Mater Interfaces 5:12120–12126

    Article  CAS  Google Scholar 

  9. Yuan LX, Wang ZH, Zhang WX, Hu XL, Chen JT, Huang YH, Goodenough JB (2011) Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci 4:269–284

    Article  CAS  Google Scholar 

  10. Zhao Y, Peng LL, Liu BR, Yu GH (2014) Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries. Nano Lett 14:2849–2853

    Article  CAS  Google Scholar 

  11. Wang L, He XM, Sun WT, Wang JL, Li YD, Fan SS (2012) Crystal orientation tuning of LiFePO4 nanoplates for high rate lithium battery cathode materials. Nano Lett 12:5632–5636

    Article  CAS  Google Scholar 

  12. Liao XZ, Ma ZF, Gong Q, He YS, Pei L, Zeng LJ (2008) Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte. Electrochem Commun 10:691–694

    Article  CAS  Google Scholar 

  13. Wu KP, Hu GR, Du K, Peng ZD, Cao YB (2015) Improved electrochemical properties of LiFePO4/graphene/carbon composite synthesized from FePO4·2H2O/graphene oxide. Ceram Int 41:13867–13871

    Article  CAS  Google Scholar 

  14. Zou BK, Wang HY, Qiang ZY, Shao Y, Sun X, Wen ZY (2016) Mixed-carbon-coated LiMn0.4Fe0.6PO4 nanopowders with excellent high rate and low temperature performances for lithium-ion batteries. Electrochim Acta 196:377–385

    Article  CAS  Google Scholar 

  15. Naik A, Zhou J, Gao C, Liu GZ, Wang L (2016) Rapid and facile synthesis of Mn doped porous LiFePO4/C from iron carbonyl complex. J Energy Inst 89:21–29

    Article  CAS  Google Scholar 

  16. Ban CM, Yin WJ, Tang HW, Wei SH, Yan YF, Dillon AC (2012) A novel codoping approach for enhancing the performance of LiFePO4 cathodes. Adv Energy Mater 2:1028–1032

    Article  CAS  Google Scholar 

  17. Ding Y, Jiang Y, Xu F, Yin J, Ren H, Zhuo Q, Long Z, Zhang P (2010) Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method. Electrochem Commun 12:10–13

    Article  CAS  Google Scholar 

  18. Li J, Zhang L, Zhang LF, Hao WW, Wang HB, Qu QT (2014) In-situ growth of graphene decorations for high-performance LiFePO4 cathode through solid-state reaction. J Power Sources 249:311–319

    Article  CAS  Google Scholar 

  19. Liang SQ, Cao XX, Wang YP, Hu Y, Pan AQ, Cao GZ (2016) Uniform 8LiFePO4·Li3V2(PO4)3/C nanoflakes for high-performance Li-ion batteries. Nano Energy 22:48–58

    Article  CAS  Google Scholar 

  20. Cao XX, Pan AQ, Zhang YF, Li JW, Luo ZG, Yang X (2016) Nanorod-Nanoflake Interconnected LiMnPO4·Li3V2(PO4)3/C Composite for High-Rate and Long-Life Lithium-Ion Batteries. ACS Appl Mater Interfaces 8:27632–27641

    Article  CAS  Google Scholar 

  21. Guo Y, Huang YD, Jia DZ, Wang XC, Sharma N, Guo ZP (2014) Preparation and electrochemical properties of high-capacity LiFePO4–Li3V2(PO4)3/C composite for lithium-ion batteries. J Power Sources 246:912–917

    Article  CAS  Google Scholar 

  22. Zhang JF, Shen C, Zhang B, Zheng JC, Peng CL, Wang XW (2014) Synthesis and performances of 2LiFePO4·Li3V2(PO4)3/C cathode materials via spray drying method with double carbon sources. J Power Sources 267:227–234

    Article  CAS  Google Scholar 

  23. Zhong SK, Wu L, Liu JQ (2012) Sol-gel synthesis and electrochemical properties of 9LiFePO4·Li3V2(PO4)3/C composite cathode material for lithium ion batteries. Electrochim Acta 74:8–15

    Article  CAS  Google Scholar 

  24. He W, Wei CL, Zhang XD, Wang YY, Liu Q, Shen JX (2016) Li3V2(PO4)3/LiFePO4 composite hollow microspheres for wide voltage lithium ion batteries. Electrochim Acta 219:682–692

    Article  CAS  Google Scholar 

  25. Wang L, Li ZC, Xu HJ, Zhang KL (2008) Studies of Li3V2(PO4)3 additives for the LiFePO4-based Li ion batteries. J Phys Chem C 112:308–312

    Article  CAS  Google Scholar 

  26. Gao C, Liu H, Liu GB, Zhang J, Wang W (2013) High-rate performance of xLiFePO4·yLi3V2(PO4)3/C composite cathode materials synthesized via polyol process. Mater Sci Eng B 178:272–276

    Article  CAS  Google Scholar 

  27. Hu Q, Liao JY, Zou BK, Wang HY, Chen CH (2016) In situ catalytic formation of graphene decoration on Na3V2(PO4)3 particles for ultrafast and long-life sodium storage. J Mater Chem A 4:16801–16804

    Article  CAS  Google Scholar 

  28. Zhu ZQ, Cheng FY, Chen J (2013) Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites. J Mater Chem A 1:9484–9490

    Article  CAS  Google Scholar 

  29. Yeganeh M, Coxon PR, Brieva AC (2007) Atomic hydrogen treatment of nanodiamond powder studied with photoemission spectroscopy. Phys Rev B 75:155404

    Article  Google Scholar 

  30. Sotoma S, Akagi K, Hosokawa S (2015) Comprehensive and quantitative analysis for controlling the physical/chemical states and particle properties of nanodiamonds for biological applications. RSC Adv 5:13818–11382

    Article  CAS  Google Scholar 

  31. Wang B, Liu TF, Liu AM, Liu GJ, Wang L, Gao TT, Wang DL, Zhao XS (2016) A hierarchical porous C@LiFePO4/Carbon nanotubes microsphere composite for high-rate lithium-ion batteries: combined experimental and theoretical study. Adv Energy Mater:1600426

  32. Hu Y, Gu DW, Jiang HY, Wang L, Sun HS, Wang JP, Shen LJ (2016) Electrochemical performance of LiFePO4/C via coaxial and uniaxial electrospinning method. Adv Chem Eng Sci 6:149–157

    Article  CAS  Google Scholar 

  33. Song JJ, Sun B, Liu H, Ma ZP, Chen ZH, Shao GJ, Wang GX (2016) Enhancement of the rate capability of LiFePO4 by a new highly graphitic carbon-coating method. ACS Appl Mater Interfaces 8:15225–15231

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to show gratitude to the National Science Foundation of China (grant no. 51577175) and NSAF (grant no. U1630106) for its financial support. We also thank Elementec Ltd. in Suzhou for its technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Hua Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Liao, JY., Zou, BK. et al. Improving the rate and low-temperature performance of LiFePO4 by tailoring the form of carbon coating from amorphous to graphene-like. J Solid State Electrochem 22, 797–805 (2018). https://doi.org/10.1007/s10008-017-3777-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3777-y

Keywords

Navigation