Skip to main content
Log in

Improving the electrochemical properties of lithium iron(II) phosphate through surface modification with manganese ion(II) and reduced graphene oxide

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Lithium iron(II) phosphate (LiFePO4) particles were simultaneously modified via reduced graphene oxide (rGO) and manganese ion(II) (Mn2+) through a facile one-step method. X-ray photoelectron spectroscopy unravels that the formation of Mn-O bond originated from Mn2+ ion and fringe oxygen atoms of LiFePO4, which is beneficial for the rate capability of cathode. As cathode for lithium-ion battery, the as-prepared rGO/Mn-LiFePO4 composite exhibits excellent electrochemical properties. Its discharge-specific capacity is 159 mAh g−1 at 1 C after 800 cycles with capacity retention of 92%. Even at a high rate of 10 C, the rGO/Mn-LiFePO4 composite is still capable of delivering 140 mAh g−1 of discharge-specific capacity, indicating its excellent rate capability and cycle stability. It was demonstrated that the simultaneous modification of Mn2+ and rGO does not destroy the olivine structure of LiFePO4, but it can stabilize the crystal structure, decrease the electrode polarization, enhance the electronic conductivity and Li+ diffusion coefficient, and thus improve its cycling and high-rate capability.

The comparisons of rate capability and cycle performance of products. The insert illustrations show SEM and TEM images of the rGO/Mn-LiFePO4 composite

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194

    Article  CAS  Google Scholar 

  2. Wang JJ, Sun XL (2015) Olivine LiFePO4: the remaining challenges for future energy storage. Energ. Environ Sci 8(4):1110–1138

    CAS  Google Scholar 

  3. Giorgetti M, Berrettoni M, Scaccia S, Passerini S (2006) Characterization of sol-gel-synthesized LiFePO4 by multiple scattering XAFS. Inorg Chem 45(6):2750–2757

    Article  CAS  Google Scholar 

  4. Chung SY, Chiang YM (2003) Microscale measurements of the electrical conductivity of doped LiFePO4. Electrochem Solid-State Lett 6(12):278–281

    Article  Google Scholar 

  5. Prosini PP, Lisi M, Zane D, Pasquali M (2002) Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics 148(1):45–51

    Article  CAS  Google Scholar 

  6. Lei XL, Zhang HY, Chen YM, Wang WG, Ye YP, Zheng CC, Deng P, Shi ZC (2015) A three-dimensional LiFePO4/carbon nanotubes/graphene composite as a cathode material for lithium-ion batteries with superior high-rate performance. J Alloys and Compds 626:280–286

    Article  CAS  Google Scholar 

  7. Zhao D, Feng YL, Wang YG, Xia YY (2013) Electrochemical performance comparison of LiFePO4 supported by various carbon materials. Electrochim Acta 88(2):632–638

    Article  CAS  Google Scholar 

  8. Shin HC, Cho WI, Jang H (2006) Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black. Electrochim Acta 52(4):1472–1476

    Article  CAS  Google Scholar 

  9. Chen TK, Qi X, Chen CY, Chang CC, Chang WC (2013) Maleic-anhydride-grafted ketjen black as the alternative carbon additive for LiFePO4 cathode. Electrochim Acta 107(10):503–508

    Article  CAS  Google Scholar 

  10. Zhang H, Chen Y, Zheng C, Zhang D, He C (2015) Enhancement of the electrochemical performance of LiFePO4/carbon nanotubes composite electrode for Li-ion batteries. Ion 21(7):1813–1818

    Article  CAS  Google Scholar 

  11. Qin G, Wu Q, Zhao J, Ma Q, Wang C (2014) C/LiFePO4/multi-walled carbon nanotube cathode material with enhanced electrochemical performance for lithium-ion batteries. J Power Sources 248:588–595

    Article  CAS  Google Scholar 

  12. Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534

    Article  CAS  Google Scholar 

  13. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff SS (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  CAS  Google Scholar 

  14. Hu LH, Wu FY, Lin CT, Khlobystov AN, Li JY (2013) Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat Comms 4(2):1687–1694

    Article  Google Scholar 

  15. Huang Y, Liu H, YC L, Hou YL, Li Q (2015) Electrophoretic lithium iron phosphate/reduced graphene oxide composite for lithium ion battery cathode application. J Power Sources 284:236–244

    Article  CAS  Google Scholar 

  16. Croce F, Epifanio AD, Hassoun J, Deptula A, Olczacb T, Scrosati B (2002) A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochem Solid-State Lett 5(3):47–50

    Article  Google Scholar 

  17. Shen WZ, Wang YM, Yan J, HX W, Guo SW (2015) Enhanced electrochemical performance of lithium iron(II) phosphate modified cooperatively via chemically reduced graphene oxide and polyaniline. Electrochim Acta 173:310–315

    Article  CAS  Google Scholar 

  18. Yang CC, Jang JH, Jiang JR (2016) Study of electrochemical performances of lithium titanium oxide-coated LiFePO4/C cathode composite at low and high temperatures. Appl Energy 162:1419–1427

    Article  CAS  Google Scholar 

  19. RF W, Xia GF, Shen SY, Zhu FJ, Jiang FJ, Zhang JL (2015) In-situ growth of LiFePO4 nanocrystals on interconnected carbon nanotubes/mesoporous carbon nanosheets for high-performance lithium ion batteries. Electrochim Acta 153:334–342

    Article  Google Scholar 

  20. Eftekhari A (2017) LiFePO4/C nanocomposites for lithium-ion batteries. J Power Sources 343:395–411

    Article  CAS  Google Scholar 

  21. Morales J, Trócoli R, Rodríguez-Castellón E, Franger S, Santos-Peña J (2009) Effect of C and Au additives produced by simple coaters on the surface and the electrochemical properties of nanosized LiFePO4. J Electroanal Chem 631(1):29–35

    Article  CAS  Google Scholar 

  22. Shao D, Wang J, Dong X, Yu W, Liu G (2013) Coaxial electrospinning fabrication and electrochemical properties of LiFePO4/C/Ag composite hollow nanofibers. J Mater Sci-Mater El 24(12):4718–4724

    Article  CAS  Google Scholar 

  23. Huang Y, Liu H, Gong L, Hou Y, Li Q (2017) A simple route to improve rate performance of LiFePO4/reduced graphene oxide composite cathode by adding Mg2+ via mechanical mixing. J Power Sources 347:29–36

    Article  CAS  Google Scholar 

  24. Mi YY, Yang CK, Zuo ZC, Qi LY, Tang CX, Zhang WD, Zhou HH (2015) Positive effect of minor manganese doping on the electrochemical performance of LiFePO4/C under extreme conditions. Electrochim Acta 176:642–648

    Article  CAS  Google Scholar 

  25. Yuan H, Wang XY, Wu Q, Shu HB, Yang XK (2016) Effects of Ni and Mn doping on physicochemical and electrochemical performances of LiFePO4/C. J Alloy Compd 675:187–194

    Article  CAS  Google Scholar 

  26. Shu HB, Wang XY, Wu Q, BA H, Yang XK, Wei QL, Liang QQ, Bai YS, Zhou M, Wu C, Chen MF, Wang AW, Jiang LL (2013) Improved electrochemical performance of LiFePO4/C cathode via Ni and Mn co-doping for lithium-ion batteries. J Power Sources 237:149–155

    Article  CAS  Google Scholar 

  27. Zhang JL, Yang HJ, Shen GX, Cheng P, Zhang JY, Guo SW (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46(7):1112–1114

    Article  CAS  Google Scholar 

  28. Shi Y, Chou SL, Wang JZ, Wexler D, Li HJ, Liu HK, Wu YP (2012) Graphene wrapped LiFePO4/C composites as cathode materials for Li-ion batteries with enhanced rate capability. J Mater Chem 22:16465–16470

    Article  CAS  Google Scholar 

  29. Fan Q, Lei LX, XY X, Yin G, Sun YM (2014) Direct growth of FePO4/graphene and LiFePO4/graphene hybrids for high rate Li-ion batteries. J Power Sources 257:65–69

    Article  CAS  Google Scholar 

  30. Kou LQ, Chen FJ, Tao F, Dong Y, Chen L (2015) High rate capability and cycle performance of Ce-doped LiMnPO4/C via an efficient solvothermal synthesis in water/diethylene glycol system. Electrochim Acta 173:721–727

    Article  CAS  Google Scholar 

  31. Huang QY, Wu Z, Su J, Long YF, Lv XY, Wen YX (2016) Synthesis and electrochemical performance of Ti-Fe co-doped LiMnPO4/C as cathode material for lithium-ion batteries. Ceram Int 42(9):11348–11354

    Article  CAS  Google Scholar 

  32. Zhao H, Lin M, Fang K, Zhou J, Sun YH (2016) Preparation and evaluation of Cu-Mn/Ca-Zr catalyst for methyl formate synthesis from syngas. Appl Catal A. G E N 514:276–283

    CAS  Google Scholar 

  33. Liu LF, SS W, Dong YB, Lü SL (2016) Effects of alloyed Mn on oxidation behaviour of a Co-Ni-Cr-Fe alloy between 1050 and 1250 °C. Corros Sci 104:236–247

    Article  CAS  Google Scholar 

  34. LH H, FY W, Lin CT, Khlobystov AN, Li LJ (2013) Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat Commun 4(2):1687

    Google Scholar 

  35. Ramana CV, AitSalah A, Utsunomiya S, Morhange JF, Mauger A, Gendron F, Julien CM (2006) Spectroscopic and chemical imaging analysis of lithium iron triphosphate. J Phys Chem C 111(2):226–233

    Google Scholar 

  36. Zhao CX, Zhang Y, Deng SZ, Xu NS, Chen J (2016) Surface nitrogen functionality for the enhanced field emission of free-standing few-layer graphene nanowalls. J Alloys Compds 672:433–439

    Article  CAS  Google Scholar 

  37. Tan BJ, Klabunde KJ, Sherwood PMA (1991) XPS studies of solvated metal atom dispersed catalysts: evidence for layered cobalt-manganese particles on alumina and silica. J Am Chem Soc 113:855–861

    Article  CAS  Google Scholar 

  38. Lim J, Gim J, Song J, Nguyen DT, Kim SJ, Jo J, Mathew V, Kim J (2016) Direct formation of LiFePO4/graphene composite via microwave-assisted polyol process. J Power Sources 304:354–359

    Article  CAS  Google Scholar 

  39. Miao S, Gao S, Shu J, Zheng WD, Xu D, Chen LL, Feng L, Ren YL (2012) LiNi1/3Co1/3Mn1/3O2 cathode materials for LIB prepared by spray pyrolysis. II. Li+ diffusion kinetics. Ion 19(1):47–52

    Google Scholar 

  40. MacArthur DM (1970) The proton diffusion coefficient for the nickel hydroxide electrode. J Electrochem Soc 117:729–733

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by 973 Special Preliminary Study Plan (Nos. 2014CB260411 and 2015CB931801), the National Science Foundation of China (No. 11374205), Scientific Research Fund of San-Qin Scholar (BJ11-26) and Scientific Research Fund of Shaanxi University of Science & Technology (XSG(4)006), National Natural Science Foundations of China (No. 21203116), and China Postdoctoral Science Foundation-funded project (No. 2014M562514XB).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenzhuo Shen or Shouwu Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Zhang, L., Feng, S. et al. Improving the electrochemical properties of lithium iron(II) phosphate through surface modification with manganese ion(II) and reduced graphene oxide. J Solid State Electrochem 22, 285–292 (2018). https://doi.org/10.1007/s10008-017-3757-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3757-2

Keywords

Navigation