Skip to main content
Log in

On the Lark-Horovitz equation for ion selective membrane electrodes and its derivation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

A Correction to this article was published on 14 November 2017

This article has been updated

Abstract

The principles of non-equilibrium thermodynamics are used to allow for entropy production due to the current transfer across regions of varying composition in electrochemical cells containing a membrane between electrolyte solutions and, optionally, a liquid junction. By this approach, a general equation is derived for the response of a cell as a whole, rather than for separate contributions to it. The equation is applied to cells with solid-electrolyte membranes of different types, as exemplified by alkali aluminosilicate glasses responsive to alkali metal cations, the pre-conditioned silicate glasses responsive to hydrogen ions, and lanthanum trifluoride responding to fluoride ions. Among the more significant results of the applications is a generalized form of the Lark-Horovitz equation for two ionic charge carriers in a sublattice of opposite charge sign. However, its derivation is circumscribed by the conditions of a uniform charge density of the sublattice and equal charge numbers and coordination numbers of the carriers. The degree to which these conditions are met by specific membranes is discussed from the structural chemistry point of view. As a special feature of hydrogen ion-responsive silicate glasses accounting for the extremely fast response, the concept of a pH-sensitive silica network is introduced on the basis of the previously found interrelationships between the bond lengths Si–OH, Si–OSi, and Si–NBO in hydrous alkali silicates, where NBO means a non-bridging oxygen coordinated by hydrogen bonds and/or alkali cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 14 November 2017

    Correction for “On the Lark-Horovitz equation for ion selective membrane electrodes and its derivation” by Dmitri P. Zarubin, J Solid State Electrochem DOI https://doi.org/10.1007/s10008-017-3744-7

Notes

  1. following Guggenheim, in his more mature writing [31, 32], chemical potential and electrochemical potential are considered here synonyms, the shorter term being preferred.

  2. this interpretation somewhat differs from the previous one [21] and seems preferable.

  3. in fact, it is not known how this is realized. Think of AgCl(cr) equilibrated with an aqueous KCl. The chemical potential of K+ in the solid must be equal to that in the solution. This is mirrored by the chemical potential of Ag+, which in the solution of KCl must be equal to that in the AgCl(cr).

  4. In addition, it was inferred in [60] that cations with a higher field strength tend to coordinate mostly the NBO atoms, and those with a lower field strength tend to include BO atoms in their coordination sphere. Recently, this inference was borne out especially clearly in a spectroscopic study of mixed (K,Mg) silicate glasses [62]. Of course, this is of little relevance to aluminosilicate glasses, in which all oxygens are regarded as BO atoms.

  5. As can be gathered from [112], Beck et al. tried to study basic solutions with the technique of extrapolation, but the results were left unpublished.

References

  1. Morf WE (1981) The principles of ion-selective electrodes and of membrane transport. Elsevier, Amsterdam

    Google Scholar 

  2. Koryta J, Štulík K (1983) Ion-selective electrodes, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Fawcett WR (2004) Liquids, solutions, and interfaces: from classical macroscopic descriptions to modern microscopic details. Oxford University Press, New York

    Google Scholar 

  4. Darbyshire JA (1933) Inner potential of metals. Philos Mag 16:761–775. https://doi.org/10.1080/14786443309462330

    Article  CAS  Google Scholar 

  5. Tillman JR (1934) The measurement of mean inner potential. Philos Mag 18:656–675. https://doi.org/10.1080/14786443409462541

    Article  CAS  Google Scholar 

  6. Tull VFG (1951) Some experimental measurements of the inner potentials of various crystals. Proc R Soc A 206:219–232

    Article  CAS  Google Scholar 

  7. Tull VFG (1951) The calculation of the inner potential of a crystal. Proc R Soc A 206:232–241

    Article  CAS  Google Scholar 

  8. Hoffmann H, Jönsson C (1965) Elektroneninterferometrische Bestimmung der mittleren inneren Potentiale. Z Phys D 182:360–365

    Article  CAS  Google Scholar 

  9. Stern RM, Gervais A (1969) Inner potential measurements in electron diffraction. Surf Sci 17:273–297

    Article  CAS  Google Scholar 

  10. Goswami A, Lisgarten ND (1980) The measurement of the inner potential of diamond. J Phys C 13:1381–1390

    Article  CAS  Google Scholar 

  11. Goswami A, Lisgarten ND (1982) The measurement of inner potentials for copper, silver and gold. J Phys C 15:4217–4223

    Article  CAS  Google Scholar 

  12. Sanchez A, Ochando MA (1985) Calculation of the mean inner potential. J Phys C 18:33–41

    Article  CAS  Google Scholar 

  13. Tafto J, Jones RH, Heald SM (1986) Transmission electron microscopy of interfaces utilizing mean inner potential differences between materials. J Appl Phys 60:4316–4318

    Article  CAS  Google Scholar 

  14. Rez D, Rez P, Grant I (1994) Dirac-Fock calculations of X-ray scattering factors and contributions to the mean inner potential. Acta Cryst A 50:481–497

    Article  Google Scholar 

  15. Saldin DK, Spence JCH (1994) On the mean inner potential in high- and low-energy electron diffraction. Ultramicroscopy 55:397–406

    Article  CAS  Google Scholar 

  16. Kruse P, Rosenauer A, Gerthsen D (2003) Determination of the mean inner potential in III–V semiconductors by electron holography. Ultramicroscopy 96:11–16

    Article  CAS  Google Scholar 

  17. Schowalter M, Titantah JT, Lamoen D (2005) Ab initio computation of the mean inner Coulomb potential of amorphous carbon structures. Appl Phys Lett 86:112102

    Article  CAS  Google Scholar 

  18. Kruse P, Schowalter P, Lamoen D, Rosenauer A, Gerthsen D (2006) Determination of the mean inner potential in III–V semiconductors, Si and Ge, by density functional theory and electron holography. Ultramicroscopy 106:105–113

    Article  CAS  Google Scholar 

  19. Lunt RR, Kena-Cohen S, Benziger JB, Forrest SR (2009) Measurement of the mean inner potentials of anthracene and naphthalene. Phys Rev Lett 102:065504

    Article  CAS  Google Scholar 

  20. Gibbs JW (1906) The scientific papers of J. Willard Gibbs, vol. 1, thermodynamics. Longmans, London, pp 338–349

    Google Scholar 

  21. Zarubin DP (2016) Potentiometric cells with liquid junctions: a combined analytical and computational study. J Solut Chem 45:591–623

    Article  CAS  Google Scholar 

  22. Zarubin DP (2017) Numerical simulation of pH measurement in dilute solutions of the system H2O-KCl-HCl. J Solut Chem 46:1284–1298

    Article  CAS  Google Scholar 

  23. Kirchhoff G (1850) On a deduction of Ohm’s laws, in connexion with the theory of electrostatics. Philos Mag 37:463–468. https://doi.org/10.1080/14786445008646655

    Google Scholar 

  24. Jefimenko O (1962) Demonstration of the electric fields of current-carrying conductors. Am J Phys 30:19–21

    Article  Google Scholar 

  25. Jackson JD (1996) Surface charges on circuit wires and resistors play three roles. Am J Phys 64:855–870

    Article  Google Scholar 

  26. Galili I, Goihbarg E (2005) Energy transfer in electrical circuits: a qualitative account. Am J Phys 73:141–143

    Article  Google Scholar 

  27. Harbola MK (2010) Energy flow from a battery to other circuit elements: role of surface charges. Am J Phys 78:1203–1206

    Article  Google Scholar 

  28. Assis AKT, Hernandes JA (2007) The electric force of a current: Weber and the surface charges of resistive conductors carrying steady current. Apeiron, Montreal

    Google Scholar 

  29. Atkins P, de Paula J (2002) Atkins’ physical chemistry, 7th edn. Oxford University Press, Oxford

    Google Scholar 

  30. DeVoe H (2001) Thermodynamics and chemistry. Prentice Hall, Upper Saddle River

    Google Scholar 

  31. Guggenheim EA (1967) Thermodynamics: an advanced treatment for chemists and physicists, 5th edn. North-Holland, Amsterdam

    Google Scholar 

  32. Guggenheim EA (1933) Modern thermodynamics by the methods of Willard Gibbs. Methuen, London

    Google Scholar 

  33. Denbigh K (1981) The principles of chemical equilibrium, 4th edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  34. Finn CBP (1993) Thermal physics, 2nd edn. Chapman & Hall, London

    Google Scholar 

  35. Kondepudi D, Prigogine I (1998) Modern thermodynamics: from heat engines to dissipative structures. Wiley, Chichester

    Google Scholar 

  36. Koenig FO (1940) On quasi-reversible conduction and galvanic cells with liquid-liquid junctions. J Phys Chem 44:101–135

    Article  CAS  Google Scholar 

  37. Staverman AJ (1952) Non-equilibrium thermodynamics of membrane processes. Trans Faraday Soc 48:176–185

    Article  CAS  Google Scholar 

  38. Zarubin DP (2011) The nature of single-ion activity coefficients calculated from potentiometric measurements on cells with liquid junctions. J Chem Thermodyn 43:1135–1152

    Article  CAS  Google Scholar 

  39. Hamilton JP, Pantano CG, Brantley SL (2000) Dissolution of albite glass and crystal. Geochim Cosmochim Acta 64:2603–2617

    Article  CAS  Google Scholar 

  40. Hamilton JP, Brantley SL, Pantano CG, Criscenti LJ, Kubicki JD (2001) Dissolution of nepheline, jadeite and albite glasses: toward better models for aluminosilicate dissolution. Geochim Cosmochim Acta 65:3683–3702

    Article  CAS  Google Scholar 

  41. Tsomaia N, Brantley SL, Hamilton JP, Pantano CG, Mueller KT (2003) NMR evidence for formation of octahedral and tetrahedral Al and repolymerization of the Si network during dissolution of aluminosilicate glass and crystal. Am Mineral 88:54–67

    Article  CAS  Google Scholar 

  42. Nogami M, Nagao R, Wong C (1998) Proton conduction in porous silica glasses with high water content. J Phys Chem B 102:5772–5775

    Article  CAS  Google Scholar 

  43. Nogami M, Abe Y (1997) Evidence for water-cooperative proton conduction in silica glasses. Phys Rev B 55:12108–12112

    Article  CAS  Google Scholar 

  44. El-Shamy TM, Morsi SE, Melibari SA (1975) Chemical durability of Na2O-Al2O3-SiO2 glasses in relation to their membrane potential. J Non-Cryst Solids 19:201–211

    Article  CAS  Google Scholar 

  45. Hamilton JP, Pantano CG (1997) Effect of glass structure on the corrosion behavior of sodium-aluminosilicate glasses. J Non-Cryst Solids 222:167–174

    Article  CAS  Google Scholar 

  46. Tomozawa M, Cherniak DJ, Lezzi PJ (2012) Hydrogen-to-alkali ratio in hydrated alkali aluminosilicate glass surfaces. J Non-Cryst Solids 358:3546–3550

    Article  CAS  Google Scholar 

  47. Barthel JMG, Krienke H, Kunz W (1998) Physical chemistry of electrolyte solutions: modern aspects. Springer, Darmstadt

    Google Scholar 

  48. Isard JO (1969) The mixed alkali effect in glass. J Non-Cryst Solids 1:235–261

    Article  CAS  Google Scholar 

  49. Day DE (1976) Mixed alkali glasses: their properties and use. J Non-Cryst Solids 21:343–372

    Article  CAS  Google Scholar 

  50. Ingram MD (1987) Ionic conductivity in glass. Phys Chem Glasses 28:215–234

    CAS  Google Scholar 

  51. Guggenheim EA (1952) Mixtures. Clarendon Press, Oxford

    Google Scholar 

  52. Tomozawa M, McGahay V (1991) Mechanism of the mixed-alkali effect based upon the thermodynamic state of glass. J Non-Cryst Solids 128:48–56

    Article  CAS  Google Scholar 

  53. Tomozawa M (1998) The mixed-alkali effect and thermodynamic state of glasses. Solid State Ionics 105:249–255

    Article  CAS  Google Scholar 

  54. Lark-Horovitz K (1931) Electromotive force of dielectrics. Nature 127:440–441

    Article  CAS  Google Scholar 

  55. Nikolsky BP (1937) Theory of glass electrode. Zh Fiz Khim 10:495–503 (in Russian)

    Google Scholar 

  56. Baur WH, Joswig W, Müller G (1996) Mechanics of the feldspar framework: crystal structure of Li-feldspar. J Solid State Chem 121:12–23

    Article  CAS  Google Scholar 

  57. Bragg L, Claringbull GF (1965) Crystal structures of minerals. G Bell and Sons, London

    Google Scholar 

  58. Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals, 2nd edn. Prentice Hall, Harlow

    Google Scholar 

  59. Wenger M, Armbruster T (1991) Crystal chemistry of lithium-oxygen coordination and bonding. Eur J Mineral 3:387–399

    Article  CAS  Google Scholar 

  60. Zarubin DP (1998) On the possible relevance of the bridging oxygen coordination state to the mixed alkali effect in oxide glasses. Phys Chem Glasses 39:192–194

    CAS  Google Scholar 

  61. Stebbins JF (1998) Cation sites in the mixed-alkali oxide glasses: correlation of NMR chemical shift data with site size and bond distance. Solid State Ionics 112:137–141

    Article  CAS  Google Scholar 

  62. Allwardt JR, Stebbins JF (2004) Ca-Mg and K-Mg mixing around non-bridging O atoms in silicate glasses: an investigation using 17O MAS and 3QMAS NMR. Am Mineral 89:777–784

    Article  CAS  Google Scholar 

  63. Xu Z, Stebbins JF (1995) 6Li nuclear magnetic resonance chemical shifts, coordination number and relaxation in crystalline and glassy silicates. Solid State Nucl Magn Reson 5:103–112

    Article  CAS  Google Scholar 

  64. Tagai T, Ried H, Joswig W, Korekawa M (1982) Kristallographische Untersuchungen eines Petalits mittels Neutronenbeugung. Z Kristallogr 160:159–170

    Article  CAS  Google Scholar 

  65. Lapp JC, Shelby JE (1987) The mixed-alkali effect in lithium-sodium aluminosilicate glasses. J Non-Cryst Solids 95&96:889–896

    Article  Google Scholar 

  66. McKeown DA, Waychunas GA, Brown GE (1985) EXAFS and XANES study of local coordination environment of sodium in a series of silica-rich glasses and selected minerals within the Na2O-Al2O3-SiO2 system. J Non-Cryst Solids 74:325–348

    Article  CAS  Google Scholar 

  67. Xu Z, Stebbins JF (1993) 23Na NMR chemical shifts and local Na coordination environments in silicate crystals, melts and glasses. Phys Chem Miner 20:297–307

    Google Scholar 

  68. Maekawa H, Nakao T, Shimokawa S, Yokokawa T (1997) Coordination of sodium ions in NaAlO2-SiO2 melts: a high temperature 23Na NMR study. Phys Chem Miner 24:55–65

    Article  Google Scholar 

  69. Hayward PJ (1977) The mixed alkali effect in aluminosilicate glasses. Part 2. The effect of nonbridging oxygen atom content. Phys Chem Glasses 39:1–6

    Google Scholar 

  70. Lezzi PJ, Tomozawa M (2011) Effect of alumina on enthalpy of mixing of mixed alkali silicate glasses. J Non-Cryst Solids 357:2086–2092

    Article  CAS  Google Scholar 

  71. Durst RA (ed) (1969) Ion-selective electrodes, NBS special publication 314. US Government Printing Office, Washington (chapters 2 and 5)

    Google Scholar 

  72. Lakshminarayanaian N (1976) Membrane electrodes. Academic Press, New York

    Google Scholar 

  73. Wells AF (1984) Structural inorganic chemistry, 5th edn. Clarendon Press, Oxford

    Google Scholar 

  74. Dubrovo SK (1965) Glass for laboratory wares and chemical apparatuses. Nauka, Leningrad (in Russian)

    Google Scholar 

  75. Baucke FGK (2001) Electrochemistry of solid glasses. In: Bach H, Baucke F, Crause D (eds) Electrochemistry of glasses and glass melts, including glass electrodes. Springer, Berlin, pp 35–268

    Chapter  Google Scholar 

  76. Guggenheim EA (1930) A study of cells with liquid-liquid junctions. J Am Chem Soc 52:1315–1337

    Article  CAS  Google Scholar 

  77. Belyustin AA (2011) The centenary of glass electrodes: from Max Cremer to FGK Baucke. J Solid State Electrochem 15:47–65

    Article  CAS  Google Scholar 

  78. Pantano CG, Dove DB, Onoda GY (1975) Glass surface analysis by Auger electron spectroscopy. J Non-Cryst Solids 19:41–53

    Article  CAS  Google Scholar 

  79. Covington AK, Flynn A (1977) Concentration profiles in the surface layer on glass electrodes by argon-ion beam sputtering. J Chem Soc Chem Commun 792–793. https://doi.org/10.1039/C39770000792

  80. Gossink RG, de Grefte HAM, Werner HW (1979) SIMS analysis of aqueous corrosion profiles in soda-lime-silica glass. J Am Ceram Soc 62:4–9

    Article  CAS  Google Scholar 

  81. Doremus RH, Mehrotra Y, Lanford WA, Burman C (1983) Reaction of water with glass: influence of a transformed surface layer. J Mater Sci 18:612–622

    Article  CAS  Google Scholar 

  82. Smets BMJ, Tholen MGW, Lommen TPA (1984) The effect of divalent cations on the leaching kinetics of glass. J Non-Cryst Solids 65:319–322

    Article  CAS  Google Scholar 

  83. Scholze H (1985) Bedeutung der ausgelaugten Schicht für die chemische Beständigkeit: Untersuchungen an einem Kalk-Natronsilicatglas. Glastech Ber 58:116–124

    CAS  Google Scholar 

  84. Koenderink GH, Brzesowsky RH, Balkenende AE (2000) Effect of the initial stages of leaching in the surface of alkaline earth sodium silicate glasses. J Non-Cryst Solids 262:80–98

    Article  CAS  Google Scholar 

  85. Pederson LR, Baer DR, McVay GL, Engelhard GH (1986) Reaction of soda lime silicate glass in isotopically labelled water. J Non-Cryst Solids 86:369–380

    Article  CAS  Google Scholar 

  86. Ferris KF, Pederson LR (1988) In situ characterisation by Fourier transform infrared spectroscopy of the reactions between glass and water. Phys Chem Glasses 29:9–12

    CAS  Google Scholar 

  87. March P, Rauch F (1990) Leaching studies of soda-lime-silica glass using deuterium- and 18O-enriched solutions. Glastech Ber 63:154–162

    CAS  Google Scholar 

  88. Pederson LR, Baer DR, McVay GL, Ferris KF, Engelhard MH (1990) Reaction of silicate glasses in water labelled with D and 18O. Phys Chem Glasses 31:177–182

    CAS  Google Scholar 

  89. Sprenger D, Bach H, Meisel W, Gütlich P (1990) XPS study of leached glass surfaces. J Non-Cryst Solids 126:111–129

    Article  CAS  Google Scholar 

  90. Herzog K, Scholz K, Thomas B (1994) Structure of hydrated layers on silicate electrode glasses. Solid State Nucl Magn Reson 3:1–15

    Article  CAS  Google Scholar 

  91. Belyustin AA (1981) Concentration distribution of ions in surface layers of alkali silicate glasses treated by aqueous solutions (in Russian). Fiz Khim Stekla 7:257–277

    CAS  Google Scholar 

  92. Baucke FGK (1974) Investigations of surface layers, formed on glass electrode membranes in aqueous solutions by means of ion sputtering method. J Non-Cryst Solids 14:13–31

    Article  CAS  Google Scholar 

  93. Baucke FGK (1975) Investigation of electrode glass membranes: proposal of a dissociation mechanism for pH glass electrodes. J Non-Cryst Solids 19:75–86

    Article  CAS  Google Scholar 

  94. Lanford WA, Davis K, Lamarche P, Laursen T, Groleau R, Doremus RH (1979) Hydration of soda-lime silicate glasses. J Non-Cryst Solids 33:249–266

    Article  CAS  Google Scholar 

  95. Doremus RH (1994) Glass science, 2nd edn. Wiley, New York

    Google Scholar 

  96. Whitfield M (1970) The effect of membrane geometry on the performance of the glass electrode cells. Electrochim Acta 15:83–96

    Article  CAS  Google Scholar 

  97. Johansson G, Karlberg B, Wikby A (1975) The hydrogen-ion selective glass electrodes. Talanta 22:953–966

    Article  CAS  Google Scholar 

  98. Wikby A (1974) The resistance of the surface layers of glass electrodes. Phys Chem Glasses 15:37–41

    CAS  Google Scholar 

  99. Ivanovskaya IS, Belyustin AA, Bandurko LV (1988) Interactions of lithium silicate glasses with acid solutions, water and steam (in Russian). Fiz Khim Stekla 14:878–885

    CAS  Google Scholar 

  100. Beck WH, Wynne-Jones WFK (1952) The hydrogen electrode function of glass membrane. J Chim Phys 49:C97–C105

    Article  CAS  Google Scholar 

  101. Covington AK, Prue JE (1955) Precise measurements with the glass electrode. Part 1. The cell: glass electrode|HCl|AgCl|Ag. J Chem Soc 3696–3700. https://doi.org/10.1039/JR9550003696

  102. Clever HL, Reeves RM (1962) Precise measurements with glass electrodes: the activity coefficients of hydrochloric acid at 65°. J Phys Chem 66:2268–2669

    Article  CAS  Google Scholar 

  103. Baes CF, Meyer NJ (1962) Acidity measurements at elevated temperatures. I. Uranium(VI) hydrolysis at 25 and 94°. Inorg Chem 1:780–789

    Article  CAS  Google Scholar 

  104. Zielen AJ (1963) The elimination of the liquid junction potentials with the glass electrode. J Phys Chem 67:1474–1479

    Article  CAS  Google Scholar 

  105. Beck WH, Caudle J, Covington AK, Wynne-Jones WFK (1963) Precise measurements with the glass electrode: the time variation of e.m.f. Proc Chem Soc 110–111. https://doi.org/10.1039/PS9630000101

  106. Lowe BM, Smith DG (1973) Dissociation constant of 2,6-dihydroxybenzoic acid in water and in deuterium oxide at 25 °C. J Chem Soc Faraday Trans I 69:1934–1944

    Article  CAS  Google Scholar 

  107. Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York, p 12

    Google Scholar 

  108. Truesdell AH (1968) Activity coefficients of aqueous sodium chloride from 15° to 50° measured with a glass electrode. Science 161:884–886

    Article  CAS  Google Scholar 

  109. Synnott JC, Butler JN (1968) The mean activity coefficient of sodium sulfate in aqueous sodium sulfate-sodium chloride electrolytes. J Phys Chem 72:2474–2477

    Article  CAS  Google Scholar 

  110. Covington AK, Srinivasan KV (1971) Standard potential of the mercury+mercury picrate electrode. J Chem Thermodyn 3:795–800

    Article  CAS  Google Scholar 

  111. Hostetler PB, Truesdell AH, Christ CL (1967) Activity coefficients of aqueous potassium chloride measured with a potassium-sensitive glass electrode. Science 155:1537–1539

    Article  CAS  Google Scholar 

  112. Beck WH, Bottom AE, Covengton AK (1968) Errors of glass electrodes in certain standard buffer solutions at high discrimination. Anal Chem 40:501–505

    Article  CAS  Google Scholar 

  113. Dole M (1941) The glass electrode: methods, applications, and theory. Wiley, New York

    Google Scholar 

  114. Schindler P, Kamber HR (1968) Die Acidität von Silanolgruppen. Helv Chim Acta 51:1781–1786

    Article  CAS  Google Scholar 

  115. Zarubin DP (2014) Compositional effects on Si–OH bond length in hydrous silicates with implications for trends in the SiOH acidity. J Solid State Chem 212:30–36

    Article  CAS  Google Scholar 

  116. Kosmulski M (2002) The pH-dependent surface charging and the points of zero charge. J Colloid Interface Sci 253:77–87

    Article  CAS  Google Scholar 

  117. Schwabe K, Dahms H, Nguyen Q, Hoffmann G (1962) Vergleichende Untersuchungen der Elektromotorischen Eigenschaften und des chemischen Verhaltnes von Glaselektroden mit Hilfe radioaktive Indikatoren II. Z Elektrochem 66:304–309

    CAS  Google Scholar 

  118. Schreiner M (1989) Secondary ion mass spectrometer analysis of potash-lime-silica glasses leached in hydrochloric and sulfuric acids. J Am Ceram Soc 72:1713–1715

    Article  CAS  Google Scholar 

  119. Tadros TF, Lyklema J (1969) The electrical double layer on silica in the presence of bivalent counter-ions. J Electroanal Chem 22:1–7

    Article  CAS  Google Scholar 

  120. Kosmulski M (1994) Co-adsorption of mono- and multivalent ions on silica and alumina. Ber Bunsenges Phys Chem 98:1062–1067

    Article  CAS  Google Scholar 

  121. Jang HM, Fuerstenau DE (1987) The nature of simple monovalent cation-silica interaction as reflected in the spin-lattice relaxation time of 23Na. Langmuir 3:1114–1118

    Article  CAS  Google Scholar 

  122. Kinningburgh DG, Jackson ML (1981) Cation adsorption by hydrous metal oxides and clay. In: Anderson MA, Rubin AJ (eds) Adsorption of inorganics at solid-liquid interfaces. Ann Arbor Sci, Ann Arbor, pp 91–160

    Google Scholar 

  123. Schindler PW, Stumm W (1987) The surface chemistry of oxides, hydroxides, and oxide minerals. In: Stumm W (ed) Aquatic surface chemistry. Wiley, New York, pp 83–110

    Google Scholar 

  124. Kosmulski M (2000) Sorption of heavy metal cations on silica. In: Paierer E (ed) Adsorption on silica surfaces, Surfactant science series, vol 90. Dekker, Basel, pp 399–440

    Google Scholar 

  125. Sahai N, Carroll SA, Roberts S, O'Day PA (2000) X-ray absorption spectroscopy of strontium(II) coordination. II sorption and precipitation at kaolinite, amorphous silica, and goethite surfaces. J Colloid Interface Sci 222:198–212

    Article  CAS  Google Scholar 

  126. Sverjensky DA (2006) Prediction of the speciation of alkaline earths adsorbed on mineral surfaces in salt solutions. Geochim Cosmochim Acta 70:2427–2453

    Article  CAS  Google Scholar 

  127. Houston JR, Herberg JL, Maxwell RS, Carroll SA (2008) Association of dissolved aluminum with silica: connecting molecular structure to surface reactivity using NMR. Geochim Cosmochim Acta 72:3326–3337

    Article  CAS  Google Scholar 

  128. MacInnes DA (1939) The principles of electrochemistry. Reinhold, New York

    Google Scholar 

  129. Marsden JE, Weinstein A (1985) Calculus III (Undergraduate texts in mathematics). Springer-Verlag, New York

    Google Scholar 

  130. Lang S (1987) Calculus of several variables (Undergraduate texts in mathematics). Springer-Verlag, New York

    Book  Google Scholar 

  131. Flanigan FJ, Kazdan JL (1990) Calculus two: linear and non-linear functions (Undergraduate texts in mathematics). Springer-Verlag, New York

    Google Scholar 

  132. Dineen S (2001) Multivariate calculus and geometry (Springer undergraduate mathematics series). Springer-Verlag, London

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri P. Zarubin.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s10008-017-3821-y.

Appendices

Appendices

Appendix A

On substituting I M from Eq. 34 into Eq. 30, it follows

$$ -\frac{F\mathcal{E}}{RT}-{\mathcal{I}}_{\mathcal{L}}={z}_{\mathrm{X}}^{-1}\left(\ln \frac{m_{\mathrm{X}}^{\upbeta}}{m_{\mathrm{X}}^{\upeta}}+\ln \frac{\gamma_{\mathrm{X}}^{\upbeta}}{\gamma_{\mathrm{X}}^{\upeta}}\right)+{z}_{\mathrm{A}}^{-1}\ln \frac{\gamma_{\mathrm{A}}^{\updelta}}{\gamma_{\mathrm{A}}^{\upbeta}}+{z}_{\mathrm{M}}^{-1}\left(\ln \frac{m_{\mathrm{M}}^{\upeta}}{m_{\mathrm{M}}^{\updelta}}+\ln \frac{\gamma_{\mathrm{M}}^{\upeta}}{\gamma_{\mathrm{M}}^{\updelta}}\right)={\left({z}_{\mathrm{X}}^{-1}\ln \frac{m_{\mathrm{X}}^{\upbeta}}{m_{\mathrm{X}}^{\upeta}}+{z}_{\mathrm{M}}^{-1}\ln \frac{m_{\mathrm{M}}^{\upeta}}{m_{\mathrm{M}}^{\updelta}}\right)}_1+{\left({z}_{\mathrm{A}}^{-1}\ln \frac{\gamma_{\mathrm{A}}^{\updelta}}{\gamma_{\mathrm{A}}^{\upbeta}}+{z}_{\mathrm{X}}^{-1}\ln \frac{\gamma_{\mathrm{X}}^{\upbeta}}{\gamma_{\mathrm{X}}^{\upeta}}+{z}_{\mathrm{M}}^{-1}\ln \frac{\gamma_{\mathrm{M}}^{\upeta}}{\gamma_{\mathrm{M}}^{\updelta}}\right)}_2 $$
(A1)

Let us introduce stoichiometric numbers for electroneutral combinations of ions, denoted by + and – in subscript:

$$ {\nu}_{+}{z}_{+}+{\nu}_{-}{z}_{-}=0 $$
(A2)

Let us also introduce the mean activity coefficients defined as

$$ \nu \kern0.2em \ln {\gamma}_{\pm }=\left({\nu}_{+}+{\nu}_{-}\right)\ln {\gamma}_{\pm }={\nu}_{+}\ln {\gamma}_{+}+{\nu}_{-}\ln {\gamma}_{-} $$
(A3)

Note that this familiar expression can be transformed with the help of Eq. A2 to

$$ \left({z}_{+}^{-1}-{z}_{-}^{-1}\right)\ln {\gamma}_{\pm }={z}_{+}^{-1}\ln {\gamma}_{+}-{z}_{-}^{-1}\ln {\gamma}_{-} $$
(A4)

Hence, the content of the round brackets indexed by 2 in Eq. A1 transforms as follows

$$ {\left(\right)}_2={z}_{\mathrm{X}}^{-1}\ln {\gamma}_{\mathrm{X}}^{\upbeta}-{z}_{\mathrm{A}}^{-1}\ln {\gamma}_{\mathrm{A}}^{\upbeta}+\left({z}_{\mathrm{M}}^{-1}-{z}_{\mathrm{X}}^{-1}\right)\ln {\gamma}_{\mathrm{M}\mathrm{X}}^{\upeta}-\left({z}_{\mathrm{M}}^{-1}-{z}_{\mathrm{A}}^{-1}\right)\ln {\gamma}_{\mathrm{M}\mathrm{A}}^{\updelta} $$
(A5)

The remaining single ion activity coefficients are those of ions of the same charge sign in the solution β. Suppose that they are counterbalanced by ions K in that solution. Then Eq. A5 can be transformed further

$$ {\left(\right)}_2={z}_{\mathrm{X}}^{-1}\ln {\gamma}_{\mathrm{X}}^{\upbeta}-{z}_{\mathrm{K}}^{-1}\ln {\gamma}_{\mathrm{K}}^{\upbeta}+{z}_{\mathrm{K}}^{-1}\ln {\gamma}_{\mathrm{K}}^{\upbeta}-{z}_{\mathrm{A}}^{-1}\ln {\gamma}_{\mathrm{A}}^{\upbeta}+\left({z}_{\mathrm{M}}^{-1}-{z}_{\mathrm{X}}^{-1}\right)\ln {\gamma}_{\mathrm{M}\mathrm{X}}^{\upeta}-\left({z}_{\mathrm{M}}^{-1}-{z}_{\mathrm{A}}^{-1}\right)\ln {\gamma}_{\mathrm{M}\mathrm{A}}^{\updelta}=-\left({z}_{\mathrm{K}}^{-1}-{z}_{\mathrm{X}}^{-1}\right)\ln {\gamma}_{\mathrm{K}\mathrm{X}}^{\upbeta}+\left({z}_{\mathrm{K}}^{-1}-{z}_{\mathrm{A}}^{-1}\right)\ln {\gamma}_{\mathrm{K}\mathrm{A}}^{\upbeta}+\left({z}_{\mathrm{M}}^{-1}-{z}_{\mathrm{X}}^{-1}\right)\ln {\gamma}_{\mathrm{M}\mathrm{X}}^{\upeta}-\left({z}_{\mathrm{M}}^{-1}-{z}_{\mathrm{A}}^{-1}\right)\ln {\gamma}_{\mathrm{M}\mathrm{A}}^{\updelta} $$
(A6)

On substituting this content back into Eq. A1 and doing some additional manipulations, we obtain

$$ \mathcal{E}=\frac{RT}{F}\left({z}_{\mathrm{M}}^{-1}\ln \frac{m_{\mathrm{M}}^{\updelta}}{m^{\ominus }}+\frac{\nu_{\mathrm{M}\mathrm{A}}}{z_{\mathrm{M}}{\nu}_{\mathrm{M}}}\ln {\gamma}_{\mathrm{M}\mathrm{A}}^{\updelta}\right)+{\mathcal{E}}_0-\frac{RT}{F}{\mathcal{I}}_{\mathcal{L}} $$
(A7)

where

$$ {\mathcal{E}}_0=\frac{RT}{F}\left[{z}_{\mathrm{M}}^{-1}\ln \frac{m^{\ominus }}{m_{\mathrm{M}}^{\upeta}}+{z}_{\mathrm{X}}^{-1}\ln \frac{m_{\mathrm{X}}^{\upeta}}{m_{\mathrm{X}}^{\upbeta}}+\left({z}_{\mathrm{K}}^{-1}-{z}_{\mathrm{X}}^{-1}\right)\ln {\gamma}_{\mathrm{K}\mathrm{X}}^{\upbeta}-\left({z}_{\mathrm{K}}^{-1}-{z}_{\mathrm{A}}^{-1}\right)\ln {\gamma}_{\mathrm{K}\mathrm{A}}^{\upbeta}-\left({z}_{\mathrm{M}}^{-1}-{z}_{\mathrm{X}}^{-1}\right)\ln {\gamma}_{\mathrm{M}\mathrm{X}}^{\upeta}\right] $$
(A8)

Equation A7 is Eq. 35 in the main text.

Appendix B

On introducing a temporary notation r = u L/u M and using the notations of Eqs. 47 and 48, we have for the transport numbers by Eq. 43

$$ {t}_{\mathrm{M}}=\frac{c_{\mathrm{M}}}{c_{\mathrm{M}}+r\left({c}_{\mathrm{T}}-{c}_{\mathrm{M}}\right)};\kern3em {t}_{\mathrm{L}}=1-{t}_{\mathrm{M}}=\frac{r\left({c}_{\mathrm{T}}-{c}_{\mathrm{M}}\right)}{c_{\mathrm{M}}+r\left({c}_{\mathrm{T}}-{c}_{\mathrm{M}}\right)} $$
(B1)

Then Eq. 41 becomes

$$ {\displaystyle \begin{array}{l}{\mathcal{I}}_{\mathcal{M}}=\kern0.5em {z}^{-1}\int \kern0.66em \left[\frac{c_{\mathrm{M}}\mathrm{d}\kern0.1em \ln {c}_{\mathrm{M}}}{c_{\mathrm{M}}+r\left({c}_{\mathrm{T}}-{c}_{\mathrm{M}}\right)}+\frac{r\left({c}_{\mathrm{T}}-{c}_{\mathrm{M}}\right)\mathrm{d}\kern0.1em \ln \left({c}_{\mathrm{T}}-{c}_{\mathrm{M}}\right)}{c_{\mathrm{M}}+r\left({c}_{\mathrm{T}}-{c}_{\mathrm{M}}\right)}\right]\\ {}={z}^{-1}\int \kern0.36em \frac{\mathrm{d}\kern0.1em \left({c}_{\mathrm{M}}+r\left({c}_{\mathrm{T}}-{c}_{\mathrm{M}}\right)\right)}{c_{\mathrm{M}}+r\left({c}_{\mathrm{T}}-{c}_{\mathrm{M}}\right)}\\ {}={z}^{-1}\ln \frac{{\left({c}_{\mathrm{M}}+{rc}_{\mathrm{L}}\right)}^{\upvarepsilon \upeta}}{{\left({c}_{\mathrm{M}}+{rc}_{\mathrm{L}}\right)}^{\updelta \upvarepsilon}}\end{array}} $$
(B2)

Using Eqs. 24 and 49, the conditions of phase equilibria at the membrane boundaries can be written as

$$ {\mu}_i^{\ominus }+ RT\;\ln \left({\gamma}_i{m}_i/{m}^{\ominus}\right)={\mu}_{i\kern0.2em \left(\mathrm{R}\right)}^{\ast }+ RT\;\ln \left({c}_i/{c}_{\mathrm{T}}\right) $$
(B3)

From this, it follows

$$ {c}_i={k}_i{\gamma}_i{m}_i{c}_{\mathrm{T}}/{m}^{\ominus } $$
(B4)

where introduced is a temporary notation

$$ {k}_i=\exp \left[\left({\mu}_i^{\ominus }-{\mu}_{i\kern0.2em \left(\mathrm{R}\right)}^{\ast}\right)/ RT\right] $$
(B5)

Substituting c i of Eq. B4 into Eq. B2 gives

$$ {\mathcal{I}}_{\mathcal{M}}=\kern0.5em {z}^{-1}\ln \frac{{\left({\gamma}_{\mathrm{M}}{m}_{\mathrm{M}}+B{\gamma}_{\mathrm{L}}{m}_{\mathrm{L}}\right)}^{\upeta}}{{\left({\gamma}_{\mathrm{M}}{m}_{\mathrm{M}}+B{\gamma}_{\mathrm{L}}{m}_{\mathrm{L}}\right)}^{\updelta}} $$
(B5)

where B is another temporary notation

$$ B=r\kern0.1em {k}_{\mathrm{L}}/{k}_{\mathrm{M}} $$
(B6)

Now we substitute I M of Eq. B5 into Eq. 30 and proceed to transform it:

$$ {\displaystyle \begin{array}{l}-\frac{F\mathcal{E}}{RT}-{\mathcal{I}}_{\mathcal{L}}={z}_{\mathrm{X}}^{-1}\left(\ln \frac{m_{\mathrm{X}}^{\upbeta}}{m_{\mathrm{X}}^{\upeta}}+\ln \frac{\gamma_{\mathrm{X}}^{\upbeta}}{\gamma_{\mathrm{X}}^{\upeta}}\right)+{z}_{\mathrm{A}}^{-1}\ln \frac{\gamma_{\mathrm{A}}^{\updelta}}{\gamma_{\mathrm{A}}^{\upbeta}}+{z}_{\mathrm{M}}^{-1}\ln \frac{{\left({\gamma}_{\mathrm{M}}{m}_{\mathrm{M}}+B{\gamma}_{\mathrm{L}}{m}_{\mathrm{L}}\right)}^{\upeta}}{{\left({\gamma}_{\mathrm{M}}{m}_{\mathrm{M}}+B{\gamma}_{\mathrm{L}}{m}_{\mathrm{L}}\right)}^{\updelta}}\\ {}={z}_{\mathrm{X}}^{-1}\left(\ln {m}_{\mathrm{X}}^{\upbeta}-\ln {m}_{\mathrm{X}}^{\upeta}\right)+{\left({z}_{\mathrm{X}}^{-1}\ln {\gamma}_{\mathrm{X}}^{\upbeta}-{z}_{\mathrm{A}}^{-1}\ln {\gamma}_{\mathrm{A}}^{\upbeta}\right)}_1-{\left[{z}_{\mathrm{X}}^{-1}\ln {\gamma}_{\mathrm{X}}^{\upeta}-{z}_{\mathrm{M}}^{-1}\ln {\left({\gamma}_{\mathrm{M}}{m}_{\mathrm{M}}+B{\gamma}_{\mathrm{L}}{m}_{\mathrm{L}}\right)}^{\upeta}\right]}_2\\ {}+{\left[{z}_{\mathrm{A}}^{-1}\ln {\gamma}_{\mathrm{A}}^{\updelta}-{z}_{\mathrm{M}}^{-1}\ln {\left({\gamma}_{\mathrm{M}}{m}_{\mathrm{M}}+B{\gamma}_{\mathrm{L}}{m}_{\mathrm{L}}\right)}^{\updelta}\right]}_3\end{array}} $$
(B7)

The content of the brackets indexed by 1 is transformed in the same way as in Appendix A, Eq. A6

$$ {\displaystyle \begin{array}{l}{\left(\right)}_1={z}_{\mathrm{X}}^{-1}\ln {\gamma}_{\mathrm{X}}^{\upbeta}-{z}_{\mathrm{A}}^{-1}\ln {\gamma}_{\mathrm{A}}^{\upbeta}\\ {}={z}_{\mathrm{X}}^{-1}\ln {\gamma}_{\mathrm{X}}^{\upbeta}-{z}_{\mathrm{K}}^{-1}\ln {\gamma}_{\mathrm{K}}^{\upbeta}+{z}_{\mathrm{K}}^{-1}\ln {\gamma}_{\mathrm{K}}^{\upbeta}-{z}_{\mathrm{A}}^{-1}\ln {\gamma}_{\mathrm{A}}^{\upbeta}\\ {}=-\left({z}_{\mathrm{K}}^{-1}-{z}_{\mathrm{X}}^{-1}\right)\ln {\gamma}_{\mathrm{K}\mathrm{X}}^{\upbeta}+\left({z}_{\mathrm{K}}^{-1}-{z}_{\mathrm{A}}^{-1}\right)\ln {\gamma}_{\mathrm{K}\mathrm{A}}^{\upbeta}\end{array}} $$
(B8)

The contents of brackets indexed by 2 and 3 are similar. Here is the transformation of the brackets 3:

$$ {\displaystyle \begin{array}{l}{\left(\right)}_3={z}_{\mathrm{M}}^{-1}\left[{z}_{\mathrm{M}}{z}_{\mathrm{A}}^{-1}\ln {\gamma}_{\mathrm{A}}^{\updelta}-\ln {\left({\gamma}_{\mathrm{M}}{m}_{\mathrm{M}}+B{\gamma}_{\mathrm{L}}{m}_{\mathrm{L}}\right)}^{\updelta}\right]\\ {}=-{z}_{\mathrm{M}}^{-1}\left[{\nu}_{\mathrm{A}}{\nu}_{\mathrm{M}}^{-1}\ln {\gamma}_{\mathrm{A}}^{\updelta}+\ln {\left({\gamma}_{\mathrm{M}}{m}_{\mathrm{M}}+B{\gamma}_{\mathrm{L}}{m}_{\mathrm{L}}\right)}^{\updelta}\right]\\ {}=-{z}_{\mathrm{M}}^{-1}\ln {\left({\gamma}_{\mathrm{M}}{\gamma}_{\mathrm{A}}^{\nu_{\mathrm{A}}/{\nu}_{\mathrm{M}}}{m}_{\mathrm{M}}+B{\gamma}_{\mathrm{L}}{\gamma}_{\mathrm{A}}^{\nu_{\mathrm{A}}/{\nu}_{\mathrm{M}}}{m}_{\mathrm{L}}\right)}^{\updelta}\\ {}=-{z}_{\mathrm{M}}^{-1}\ln {\left({\gamma}_{\mathrm{M}\mathrm{A}}^{\nu_{\mathrm{M}\mathrm{A}}/{\nu}_{\mathrm{M}}}{m}_{\mathrm{M}}+B{\gamma}_{\mathrm{L}\mathrm{A}}^{\nu_{\mathrm{L}\mathrm{A}}/{\nu}_{\mathrm{L}}}{m}_{\mathrm{L}}\right)}^{\updelta}\end{array}} $$
(B9)

Note that ν M = ν L as follows from Eq. 47 in the main text.

On substituting the transformed brackets back into Eq. B7, we arrive at the following

$$ \mathcal{E}=\frac{RT}{z_{\mathrm{M}}F}\ln \frac{{\left({\gamma}_{\mathrm{M}\mathrm{A}}^{\nu_{\mathrm{M}\mathrm{A}}/{\nu}_{\mathrm{M}}}{m}_{\mathrm{M}}+B{\gamma}_{\mathrm{L}\mathrm{A}}^{\nu_{\mathrm{L}\mathrm{A}}/{\nu}_{\mathrm{L}}}{m}_{\mathrm{L}}\right)}^{\updelta}}{{\left({\gamma}_{\mathrm{M}\mathrm{A}}^{\nu_{\mathrm{M}\mathrm{A}}/{\nu}_{\mathrm{M}}}{m}_{\mathrm{M}}+B{\gamma}_{\mathrm{L}\mathrm{A}}^{\nu_{\mathrm{L}\mathrm{A}}/{\nu}_{\mathrm{L}}}{m}_{\mathrm{L}}\right)}^{\upeta}}+{\mathcal{E}}_0-\frac{RT}{F}{\mathcal{I}}_{\mathcal{L}} $$
(B10)

where

$$ {\mathcal{E}}_0=\frac{RT}{F}\left[{z}_{\mathrm{X}}^{-1}\ln \frac{m_{\mathrm{X}}^{\upeta}}{m_{\mathrm{X}}^{\upbeta}}+\left({z}_{\mathrm{K}}^{-1}-{z}_{\mathrm{X}}^{-1}\right)\ln {\gamma}_{\mathrm{K}\mathrm{X}}^{\upbeta}+\left({z}_{\mathrm{K}}^{-1}-{z}_{\mathrm{A}}^{-1}\right)\ln {\gamma}_{\mathrm{K}\mathrm{A}}^{\upbeta}\right] $$
(B11)

Equation B10 is Eq. 50 of the main text.

Appendix C

On substituting I M from Eq. 54 into Eq. 30, it follows

$$ -\frac{F\mathcal{E}}{RT}-{\mathcal{I}}_{\mathcal{L}}={z}_{\mathrm{X}}^{-1}\left(\ln \frac{m_{\mathrm{X}}^{\upbeta}}{m_{\mathrm{X}}^{\upeta}}+\ln \frac{\gamma_{\mathrm{X}}^{\upbeta}}{\gamma_{\mathrm{X}}^{\upeta}}\right)+{z}_{\mathrm{A}}^{-1}\ln \frac{\gamma_{\mathrm{A}}^{\updelta}}{\gamma_{\mathrm{A}}^{\upbeta}}+{z}_{\mathrm{Y}}^{-1}\left(\ln \frac{m_{\mathrm{Y}}^{\upeta}}{m_{\mathrm{Y}}^{\updelta}}+\ln \frac{\gamma_{\mathrm{Y}}^{\upeta}}{\gamma_{\mathrm{Y}}^{\updelta}}\right) $$
(C1)

Applying algebraic transformations similar to Appendix A gives (cf. Eq. A7)

$$ \mathcal{E}=\frac{RT}{F}\left({z}_{\mathrm{Y}}^{-1}\ln \frac{m_{\mathrm{Y}}^{\updelta}}{m^{\ominus }}+\frac{\nu_{\mathrm{Y}\mathrm{A}}}{z_{\mathrm{Y}}{\nu}_{\mathrm{Y}}}\ln {\gamma}_{\mathrm{Y}\mathrm{A}}^{\updelta}\right)+{\mathcal{E}}_0-\frac{RT}{F}{\mathcal{I}}_{\mathcal{L}} $$
(C2)

where

$$ {\mathcal{E}}_0=\frac{RT}{F}\left[{z}_{\mathrm{Y}}^{-1}\ln \frac{m^{\ominus }}{m_{\mathrm{Y}}^{\upeta}}+{z}_{\mathrm{X}}^{-1}\ln \frac{m_{\mathrm{X}}^{\upeta}}{m_{\mathrm{X}}^{\upbeta}}+\left({z}_{\mathrm{A}}^{-1}-{z}_{\mathrm{X}}^{-1}\right)\ln {\gamma}_{\mathrm{A}\mathrm{X}}^{\upbeta}-\left({z}_{\mathrm{K}}^{-1}-{z}_{\mathrm{X}}^{-1}\right)\ln {\gamma}_{\mathrm{K}\mathrm{X}}^{\upeta}+\left({z}_{\mathrm{K}}^{-1}-{z}_{\mathrm{Y}}^{-1}\right)\ln {\gamma}_{\mathrm{K}\mathrm{Y}}^{\upeta}\right] $$
(C3)

Equation C2 is Eq. 55 in the main text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarubin, D.P. On the Lark-Horovitz equation for ion selective membrane electrodes and its derivation. J Solid State Electrochem 22, 613–633 (2018). https://doi.org/10.1007/s10008-017-3744-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3744-7

Keywords

Navigation