Skip to main content

Advertisement

Log in

Development of an iridium-based pH sensor for bioanalytical applications

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A new iridium-based planar pH sensor for bioanalytical purposes is introduced. The fabrication of the sensor was carried out by a two-stage coating process of different iridium solutions on a platinum thick film surface. The pH response behaviour and the Nernstian characteristics of the double-layer electrode exhibited better results than the single iridium depositions. An almost theoretical Nernstian slope could be obtained as well as a pH response time of about 3 to 5 min in a pH range of 4.01 to 9.18. Furthermore, a biofilm growth of different microorganisms onto the iridium-coated electrodes could be achieved. Afterwards, the viability of the microorganisms was demonstrated via cell plating studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Spitzer P, Pratt KW (2011) The history and development of a rigorous metrological basis for pH measurements. J Solid State Electrochem 15:69–76

    Article  CAS  Google Scholar 

  2. Deublein D, Steinhauser A (2011) Biogas from waste and renewable resources: an introduction. Wiley-VCH Verlag GmbH & Co. KGaA, Second Edition, Weinheim

  3. Gründler P (2007) Chemical sensors: an introduction for scientists and engineers. Springer-Verlag, Berlin

    Google Scholar 

  4. Scheper T (2008) Biosensing for the 21st century. Springer-Verlag, Berlin

    Google Scholar 

  5. Ulber R, Frerichs J-G, Beutel S (2003) Optical sensor systems for bioprocess monitoring. Anal Bioanal Chem 376:342–348

    Article  CAS  Google Scholar 

  6. Magnusson EB, Halldorsson S, Fleming RMT, Leosson K (2013) Real-time optical pH measurement in a standard microfluidic cell culture system. Biomed Optics Express 4(9):1749–1758

    Article  Google Scholar 

  7. Rajan DK, Patrikoski M, Verho J, Sivula J, Ihalainen H, Miettinen S, Lekkala J (2016) Optical non-contact pH measurement in cell culture with sterilizable, modular parts. Talanta 161:755–761

    Article  Google Scholar 

  8. Kühl M, Jørgensen BB (1992) Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms. Appl Environ Microbiol 58(4):1164–1174

    Google Scholar 

  9. Santegoeds CM, Schramm A, de Beer D (1998) Microsensors as a tool to determine chemical microgradients and bacterial activity in wastewater biofilms and flocs. Biodegradation 9(3):159–167

    Article  CAS  Google Scholar 

  10. Ohle C, Gieseke A, Nistico L, Decker EM, de Beer D, Stoodley P (2010) Real-time microsensor measurement of local metabolic activities in ex vivo dental biofilms exposed to sucrose and treated with chlorhexidine. Appl Environ Microbiol 76(7):2326–2334

    Article  Google Scholar 

  11. Vonau W, Guth U (2006) pH Monitoring: a review. J Solid State Electrochem 10:746–752

    Article  CAS  Google Scholar 

  12. Kahlert H (2008) Functionalized carbon electrodes for pH determination. J Solid State Electrochem 12:1255–1266

    Article  CAS  Google Scholar 

  13. Alizadeh T, Jamshidi F (2015) Synthesis of nanosized sulfate-modified α-Fe2O3 and its use for the fabrication of all-solid-state carbon paste pH sensor. J Solid State Electrochem 19:1053–1062

    Article  CAS  Google Scholar 

  14. Samsonova EN, Lutov VM, Mikhelson KN (2009) Solid-contact ionophore-based electrode for determination of pH in acidic media. J Solid State Electrochem 13:69–75

    Article  CAS  Google Scholar 

  15. Shuk P, Guth U, Greenblatt M (2002) Ion-selective sensors based on molybdenum bronzes. J Solid State Electrochem 6:374–383

    Article  CAS  Google Scholar 

  16. Razmi H, Heidari H, Habibi E (2008) pH-sensing properties of PbO2 thin film electrodeposited on carbon ceramic electrode. J Solid State Electrochem 12:1579–1587

    Article  CAS  Google Scholar 

  17. Prats-Alfonso E, Abad L, Casan-Pastor N, Gonzalo-Ruiz J, Baldrich E (2013) Iridium oxide pH sensor for biomedical applications. Case urea-urease in real urine samples. Biosens Bioelectron 39(1):163–169

    Article  CAS  Google Scholar 

  18. Ianniello RM, Yacynych AM (1983) Urea sensor based on iridium dioxide electrodes with immobilized urease. Anal Chim Acta 146:249–253

    Article  CAS  Google Scholar 

  19. Kinoshita E, Ingman F, Edwall G, Thulin S, Glab S (1986) Polycrystalline and monocrystalline antimony, iridium and palladium as electrode material for pH-sensing electrodes. Talanta 33(2):125–134

    Article  CAS  Google Scholar 

  20. Kurzweil P (2009) Metal oxides and ion-exchanging surfaces as pH sensors in liquids: state-of-the-art and outlook. Sensors 9(6):4955–4985

    Article  CAS  Google Scholar 

  21. Cruz AM, Abad L, Carretero NM, Moral-Vico J, Fraxedas J, Lozano P, Subías G, Padial V, Carballo M, Collazos-Castro J, Casan-Pastor N (2012) Iridium oxohydroxide, a significant member in the family of iridium oxides. Stoichiometry, characterization, and implications in bioelectrodes. J Phys Chem C 116:5155–5168

    Article  CAS  Google Scholar 

  22. Silva TM, Rito JE, Simoes AMP, Ferreira MGS, da Cunha BM, Watkins KG (1998) Electrochemical characterisation of oxide films formed on Ti-6A1-4V alloy implanted with Ir for bioengineering applications. Electrochim Acta 43(1–2):203–211

    Article  CAS  Google Scholar 

  23. Weiland JD, Anderson DJ (2000) Chronic neural stimulation with thin-film, iridium oxide electrodes. IEEE Trans Biomed Eng 47(7):911–918

    Article  CAS  Google Scholar 

  24. Wang K, Liu C-C, Durand DM (2009) Flexible nerve stimulation electrode with iridium oxide sputtered on liquid crystal polymer. IEEE Trans Biomed Eng 56(1):6–14

    Article  Google Scholar 

  25. Yamanaka K (1989) Anodically electrodeposited iridium oxide films (AEIROF) from alkaline solutions for electrochromic display devices. Jpn J Appl Phys 28(4):632–637

    Article  CAS  Google Scholar 

  26. Yano J, Noguchi K, Yamasaki S, Yamazaki S (2004) Novel color change of electrochromic iridium oxide in a matrix aramid resin film. Electrochem Commun 6(2):110–114

    Article  CAS  Google Scholar 

  27. Bezbaruah AN, Zhang TC (2002) Fabrication of anodically electrodeposited iridium oxide film pH microelectrodes for microenvironmental studies. Anal Chem 74(22):5726–5733

    Article  CAS  Google Scholar 

  28. Katsube T, Lauks I, Zemel JN (1982) pH-sensitive sputtered iridium oxide films. Sensors Actuators 2:399–410

    Article  CAS  Google Scholar 

  29. Kim TY, Yang S (2014) Fabrication method and characterization of electrodeposited and heat-treated iridium oxide films for pH sensing. Sensors Actuators B Chem 196:31–38

    Article  CAS  Google Scholar 

  30. Kreider KG, Tarlov MJ, Cline JP (1995) Sputtered thin-film pH electrodes of platinum, palladium, ruthenium, and iridium oxides. Sensors Actuators B Chem 28(3):167–172

    Article  CAS  Google Scholar 

  31. Olthuis W, Robben MAM, Bergveld P, Bos M, van der Linden WE (1990) pH-sensor properties of electrochemically grown iridium oxide. Sensors Actuators B Chem 2(4):247–256

    Article  CAS  Google Scholar 

  32. Wang M, Yao S, Madou M (2002) A long-term stable iridium oxide pH electrode. Sensors Actuators B Chem 81(2–3):313–315

    Article  CAS  Google Scholar 

  33. Thanawala S, Georgiev DG, Baird RJ, Auner G (2007) Characterization of iridium oxide thin films deposited by pulsed-direct-current reactive sputtering. Thin Solid Films 515(18):7059–7065

    Article  CAS  Google Scholar 

  34. Ryynänen T, Nurminen K, Hämäläinen J, Leskelä M, Lekkala J (2010) pH electrode based on ALD deposited iridium oxide. Procedia Eng 5:548–551

    Article  Google Scholar 

  35. Elzanowska H, Abu-Irhayem E, Skrzynecka B, Birss VI (2004) Hydrogen peroxide detection at electrochemically and Sol-Gel derived Ir oxide films. Electroanalysis 16(6):478–490

    Article  CAS  Google Scholar 

  36. de Oliveira-Sousa A, da Silva MAS, Machado SAS, Avaca LA, de Lima-Neto P (2000) Influence of the preparation method on the morphological and electrochemical properties of Ti/IrO2-coated electrodes. Electrochim Acta 45(27):4467–4473

    Article  Google Scholar 

  37. Nguyen CM, Rao S, Yang X, Dubey S, Mays J, Cao H, Chiao J-C (2015) Sol-Gel deposition of iridium oxide for biomedical micro-devices. Sensors 15(2):4212–4228

    Article  CAS  Google Scholar 

  38. Huang W-D, Cao H, Deb S, Chiao M, Chiao JC (2011) A flexible pH sensor based on the iridium oxide sensing film. Sensors Actuators A Phys 169(1):1–11

    Article  CAS  Google Scholar 

  39. Wang M, Yao S (2003) Carbonate-melt oxidized iridium wire for pH sensing. Electroanalysis 15(20):1606–1615

    Article  CAS  Google Scholar 

  40. Petit MA, Plichon V (1998) Anodic electrodeposition of iridium oxide films. J Electroanal Chem 444:247–252

    Article  CAS  Google Scholar 

  41. Baur JE, Spaine TW (1998) Electrochemical deposition of iridium(IV) oxide from alkaline solutions of iridium(III) oxide. J Electroanal Chem 443:208–216

    Article  CAS  Google Scholar 

  42. Juodkazyte J, Sebeka B, Valsiunas I, Juodkazis K (2005) Iridium anodic oxidation to Ir(III) and Ir(IV) hydrous oxides. Electroanalysis 17(11):947–952

    Article  CAS  Google Scholar 

  43. VanHoudt P, Lewandowski Z, Little B (1992) Iridium oxide pH microelectrode. Biotechnol Bioeng 40:601–608

    Article  CAS  Google Scholar 

  44. Burke LD, Whelan DP (1984) A new interpretation of the charge storage and electrical conductivity behaviour of hydrous iridium oxide. J Electroanal Chem Interfacial Elecrtochem 162(1–2):121–141

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the Bundesministerium für Wirtschaft und Energie (BMWi) through the federation for industrial research (AiF) (IGF-project: 18150BG) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bause.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bause, S., Decker, M., Gerlach, F. et al. Development of an iridium-based pH sensor for bioanalytical applications. J Solid State Electrochem 22, 51–60 (2018). https://doi.org/10.1007/s10008-017-3721-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3721-1

Keywords

Navigation