Skip to main content
Log in

Synthesis of nanosized sulfate-modified α-Fe2O3 and its use for the fabrication of all-solid-state carbon paste pH sensor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A new solid-state pH sensor based on a carbon paste electrode, incorporated with sulfate-modified nanosized α-Fe2O3, was introduced. The nanosized α-Fe2O3 particles were synthesized via sol-gel technique and then modified with sulfate groups. The synthesized nanoparticles were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) methods. The obtained material was incorporated with carbon paste electrode to fabricate a solid-state pH sensor. It was shown that the modification of hematite nanoparticles with sulfate improved the sensor efficiency regarding Nernstian slope as well as pH determination range. The effect of electrode composition (sulfated α-Fe2O3, carbon, and binder) on its response was also investigated. The electrode gave response time of approximately 10 s, and no hysteric effect was found for sensor response. The electrode was checked for acid-base titrations, and the obtained results were comparable with those of traditional glass electrode. The developed sensor showed linear response from pH 1.5 to 12.5 with a slope of −58.5 ± 0.6 mV/pH (at 25 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cross GG, Fyles TM, Suresh VV (1994) Coated wire electrodes containing polymer immobilized ionophores blended with poly (vinyl chloride). Talanta 41:1589–1596

    Article  CAS  Google Scholar 

  2. Huang WD, Cao H, Deb S, Chiao M, Chiao JC (2011) A flexible pH sensor based on the iridium oxide sensing film. Sens Actuators B 169:1–11

    Article  CAS  Google Scholar 

  3. Pasztor K, Sekiguchi A, Shimo N, Kitamura N, Masuhara H (1993) Iridium oxidebased microelectrochemical transistors for pH sensing. Sens Actuators B 12:225–230

    Article  CAS  Google Scholar 

  4. Wolfbeis OS (2004) Fiber-optic chemical sensors and biosensors. Anal Chem 76:3269–3284

    Article  CAS  Google Scholar 

  5. Safavi A, Bagheri M (2003) Novel optical pH sensor for high and low pH values. Sens Actuators B 90:143–150

    Article  CAS  Google Scholar 

  6. Gerlach G, Guenther M, Sorber J, Suchaneck G, Arndt KF, Richter A (2005) Chemical and pH sensors based on the swelling behavior of hydrogels. Sens Actuators B 111:555–561

    Article  Google Scholar 

  7. Kinlen PJ, Heider JE, Hubbard DE (1994) A solid-state pH sensor based on a Nafion coated iridium oxide indicator electrode and a polymer-based silver chloride reference electrode. Sens Actuators B 22:13–25

    Article  CAS  Google Scholar 

  8. McMurray HN, Douglas P, Abbot C (1995) Novel thick-film pH sensors based on ruthenium dioxide–glass composites. Sens Actuators B 28:9–15

    Article  CAS  Google Scholar 

  9. Yao S, Wang M, Madou M (2001) A pH electrode based on melt-oxidized iridium Oxide. J Electrochem Soc 148:29–36

    Article  Google Scholar 

  10. Edwall G (1979) Influence of crystallographic properties on antimony electrode potential. Electrochim Acta 24:595–603

    Article  CAS  Google Scholar 

  11. Ha Y, Wang M (2006) Capillary melt method for microantimony oxide pH electrode. Electroanalysis 18:1121–1125

    Article  CAS  Google Scholar 

  12. Gomes MAB, Bulhoes LOS (1984) A study of niobium as an indicator electrode. J Electroanal Chem Interf Electrochem 165:289–292

    Article  CAS  Google Scholar 

  13. Razmi H, Heidari H, Habibi E (2008) pH-sensing properties of PbO2 thin film electrodeposited on carbon ceramic electrode. J Solid State Electrochem 12:1579–1587

    Article  CAS  Google Scholar 

  14. Lima AC, Jesus AA, Tenan MA, Silva AFDS, Oliveira AF (2005) Evaluation of a high sensitivity PbO2 pH-sensor. Talanta 66:225–228

    Article  CAS  Google Scholar 

  15. Fog A, Buck R (1984) Electronic semiconductor oxides as pH sensors. Sens Actuators 5:137–146

    Article  CAS  Google Scholar 

  16. Pocrifka LA, Goncalves C, Grossi P, Colpa PC, Pereira EC (2006) Development of RuO2-TiO2 (70-30) mol% for pH measurements. Sens Actuators B 113:1012–1016

    Article  CAS  Google Scholar 

  17. McMurray HN, Douglas P, Abbot C (1995) Novel thick-film pH sensors based on ruthenium dioxide–glass composites. Sens Actuators B 28:9–15

    Article  CAS  Google Scholar 

  18. Liao YH, Chou JC (2007) Preparation and characteristics of ruthenium dioxide for pH array sensors with real-time measurement system. Sens Actuators B 128:603–612

    Article  Google Scholar 

  19. Qingwen L, Yiming W, Guoan L (1999) pH-response of nano-sized MnO2 prepared with solid state reaction route at room temperature. Sens Actuators B 59:42–47

    Article  CAS  Google Scholar 

  20. Kreider KG, Tarlov MJ, Cline JP (1995) Sputtered thin-film pH electrodes of platinum, palladium, ruthenium, and iridium oxides. Sens Actuators B 28:167–172

    Article  CAS  Google Scholar 

  21. Marzouk SAM (2003) Improved electrodeposited iridium oxide pH sensor fabricated on etched titanium substrates. Anal Chem 75:1258–1266

    Article  CAS  Google Scholar 

  22. Kinoshita K, Madou MJ (1984) Electrochemical measurement on Pt, Ir and Ti oxides as pH probes. J Electrochem Soc 131:1089–1094

    Article  CAS  Google Scholar 

  23. Ges IA, Ivanov BL, Werdich AA, Baudenbacher FJ (2007) Differential pH measurements of metabolic cellular activity in nl culture volumes using microfabricated iridium oxide electrodes. Biosens Bioelectron 22:1303–1310

    Article  CAS  Google Scholar 

  24. Kinoshita E, Ingman F, Edwall G, Glab S (1986) An examination of the palladium/palladium oxide system and its utility for pH-sensing electrodes. Electrochim Acta 31:29–35

    Article  CAS  Google Scholar 

  25. Wu CL, Chou JC, Chung WY, Sun TP, Hsiung SK (2000) Study on SnO2/Al/SiO2/Si ISFET metal light shield. Mater Chem Phys 63:153–156

    Article  CAS  Google Scholar 

  26. Chin YL, Chou JC, Chung WY, Sun TP, Hsiung SK (2001) Study on a novel SnO2/Al discrete gate ISFET pH sensor with CMOS standard process. Sens Actuators B 75:36–42

    Article  CAS  Google Scholar 

  27. Lee JS, Park DS (1989) Interaction of pyridine and ammonia with a sulfate-promoted iron oxide catalyst. J Catal 120:46–54

    Article  CAS  Google Scholar 

  28. Teixeira MFS, Ramos LA, Neves EA, Cavalheiro ETG (2002) A solid Fe2O3 based carbon-epoxy electrode for potentiometric measurements of pH. J Anal Chem 57:826–831

    Article  CAS  Google Scholar 

  29. Qingwen L, Guoan L, Youqin S (2000) Response of nanosized cobalt oxide electrodes as pH sensors. Anal Chim Acta 409:137–142

    Article  CAS  Google Scholar 

  30. Vijayakumar M, Pham QN, Bohnke C (2005) Lithium lanthanum titanate ceramic as sensitive material for pH sensor: influence of synthesis methods and powder grains size. J Eur Ceram Soc 25:2973–2976

    Article  CAS  Google Scholar 

  31. Metelka R, Zeravik M, Vytras K (2010) Carbon paste electrode containing dispersed bismuth powder for pH measurements. Sens Electroanal 5:257–267

    Google Scholar 

  32. Li YH, Zhu J, Dai L, Wang L (2012) Study of the pH sensitivity of a carbon-paste electrode modified with Li0.31La0.56TiO3-xSrTiO3. Adv Mater Res 554–556:430–435

    Google Scholar 

  33. Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  34. Jiang XC, Yu AB, Yang WR, Ding Y, Xu CX, Lam S (2010) Synthesis and growth of hematite nanodiscs through a facile hydrothermal approach. J Nanopart Res 12:877–893

    Article  CAS  Google Scholar 

  35. Cullity BD (1978) Elements of X-ray differaction, 2rd edition,Eddison-Wesley Publishing Inc.

  36. Yamaguchi T, Jin T, Tanabe K (1986) Structure of acid sites on sulfur-promoted iron oxide. J Phys Chem 90:3149–3152

    Article  Google Scholar 

  37. Kurzweil P (2009) Metal oxides and ion-exchanging surfaces as pH sensors in liquids: state-of-the-art and outlook. Sensors 9:4955–4985

    Article  CAS  Google Scholar 

  38. Parks GA, Bruyn L (1962) The zero point of charge of oxides. J Phys Chem 66:967–973

    Article  CAS  Google Scholar 

  39. Quan H, Kim W, Chung KC, Park J (2005) Surface renewable hydrogen ion-selective polymeric composite electrode containing iridium oxide. Bull Korean Chem Soc 26:1565–1568

    Article  CAS  Google Scholar 

  40. Teixeira MFS, Moraes FC, Fatibello-Filho O, Ferracin LC, Rocha-Filho RC, Nerilso Bocchi N (1999) A novel λ-MnO-based graphite–epoxy electrode for potentiometric determination of acids and bases. Sens Actuators B 56:169–174

    Article  CAS  Google Scholar 

  41. Mihell JA, Atkinson JK (1998) Planar thick-film pH electrodes based on ruthenium hydrate. Sens Actuators B 48:505–511

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taher Alizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, T., Jamshidi, F. Synthesis of nanosized sulfate-modified α-Fe2O3 and its use for the fabrication of all-solid-state carbon paste pH sensor. J Solid State Electrochem 19, 1053–1062 (2015). https://doi.org/10.1007/s10008-014-2716-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2716-4

Keywords

Navigation