Skip to main content
Log in

Na3V2(PO4)3/C nanofiber bifunction as anode and cathode materials for sodium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Na3V2(PO4)3/C composite nanofibers are prepared successfully through a coaxial electrospinning technique and subsequent calcination. The diameter of the prepared nanofibers is uniformly distributed (about 100∼200 nm), and the composite nanofibers (NF-NVP/C) contain Na3V2(PO4)3 nanofibers and carbon nanofibers, and Na3V2(PO4)3 nanoparticles with diameters of 5–10 nm are embedded into the composite nanofibers. The NF-NVP/C anode exhibits a high reversible capacity 189.9 mAh/g at a current rate of 0.2 C (1 C=118 mA/g) in the voltage range of 0.01–3.00 V (vs. Na+/Na). Even at high rates of 5 and 10 C, this anode displays discharge capacities of 105.1 and 80.4 mAh/g at the second cycle and capacity retentions of 83 and 77% after 200 and 500 cycles, respectively. A sodium-ion full cell with NF-NVP/C as the electroactive material of both positive and negative electrodes presents two average operating voltages at ∼0.5 and ∼1.5 V and delivers a reversible capacity of 106.2 mAh/g at a current density of 100 mA/g in a voltage range of 0.01–4.00 V. The outstanding electrochemical performance is attributed to the unique nanofiber structure and uniform distribution of NVP nanoparticles in the highly conductive carbon matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim SW, Seo DH, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721

    Article  CAS  Google Scholar 

  2. Song J, Yu Z, Gordin ML, Hu S, Yi R, Tang D, Walter T, Regula M, Choi D, Li X, Manivannan A, Wang D (2014) Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett 14:6329–6335

    Article  CAS  Google Scholar 

  3. Park YU, Seo DH, Kwon HS, Kim B, Kim J, Kim H, Kim I, Yoo HI, Kang K (2013) A new high-energy cathode for a Na-ion battery with ultrahigh stability. J Am Chem Soc 135:13870–13878

    Article  CAS  Google Scholar 

  4. Chevrier VL, Ceder G (2011) Challenges for Na-ion negative electrodes. J Electrochem Soc 158:A1011

    Article  CAS  Google Scholar 

  5. Wu M, Xiao X, Vukmirovic N, Xun S, Das PK, Song X, Olalde-Velasco P, Wang D, Weber AZ, Wang LW, Battaglia VS, Yang W, Liu G (2013) Toward an ideal polymer binder design for high-capacity battery anodes. J Am Chem Soc 135:12048–12056

    Article  CAS  Google Scholar 

  6. Ding JJ, Zhou YN, Sun Q, Fu ZW (2012) Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries. Electrochem Commun 22:85–88

    Article  CAS  Google Scholar 

  7. Billaud J, Clement RJ, Armstrong AR, Canales-Vazquez J, Rozier P, Grey CP, Bruce PG (2014) Beta-NaMnO2:a high-performance cathode for sodium-ion batteries. J Am Chem Soc 136:17243–17248

    Article  CAS  Google Scholar 

  8. Kim J, Seo DH, Kim H, Park I, Yoo JK, Jung SK, Park YU, Goddard Iii WA, Kang K (2015) Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries. Energy Environ Sci 8:540–545

    Article  CAS  Google Scholar 

  9. Avdeev M, Mohamed Z, Ling CD, Lu J, Tamaru M, Yamada A, Barpanda P (2013) Magnetic structures of NaFePO4 maricite and triphylite polymorphs for sodium-ion batteries. Inorg Chem 52:8685–8693

    Article  CAS  Google Scholar 

  10. Peng M, Li B, Yan H, Zhang D, Wang X, Xia D, Guo G (2015) Ruthenium-oxide-coated sodium vanadium fluorophosphate nanowires as high-power cathode materials for sodium-ion batteries. Angew Chem Int Ed Engl 54:6452–6456

    Article  CAS  Google Scholar 

  11. Wang L, Song J, Qiao R, Wray LA, Hossain MA, Chuang YD, Yang W, Lu Y, Evans D, Lee JJ, Vail S, Zhao X, Nishijima M, Kakimoto S, Goodenough JB (2015) Rhombohedral prussian white as cathode for rechargeable sodium-ion batteries. J Am Chem Soc 137:2548–2554

    Article  CAS  Google Scholar 

  12. Hu Z, Wang L, Zhang K, Wang J, Cheng F, Tao Z, Chen J (2014) MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew Chem 126:13008–13012

    Article  Google Scholar 

  13. Su D, Dou S, Wang G (2015) Ultrathin MoS2 nanosheets as anode materials for sodium-ion batteries with superior performance. Adv Energy Mater 5:1401205

    Article  Google Scholar 

  14. Liu Y, He X, Hanlon D, Harvey A, Coleman JN, Li Y (2016) Liquid phase exfoliated MoS2 nanosheets percolated with carbon nanotubes for high volumetric/areal capacity sodium-ion batteries. ACS Nano 10:8821–8828

    Article  CAS  Google Scholar 

  15. Pan H, Lu X, Yu X, Hu YS, Li H, Yang XQ, Chen L (2013) Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries. Adv Energy Mater 3:1186–1194

    Article  CAS  Google Scholar 

  16. Dong S, Shen L, Li H, Pang G, Dou H, Zhang X (2016) Flexible sodium-ion pseudocapacitors based on 3D Na2Ti3O7 nanosheet arrays/carbon textiles anodes. Adv Funct Mater 26:3703–3710

    Article  CAS  Google Scholar 

  17. Fu S, Ni J, Xu Y, Zhang Q, Li L (2016) Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for sodium-ion batteries. Nano Lett 16:4544–4551

    Article  CAS  Google Scholar 

  18. Jian Z, Zhao L, Pan H, Hu YS, Li H, Chen W, Chen L (2012) Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem Commun 14:86–89

    Article  CAS  Google Scholar 

  19. Jung YH, Lim CH, Kim DK (2013) Graphene-supported Na3V2(PO4)3 as a high rate cathode material for sodium-ion batteries. J Mater Chem A 1:11350

    Article  CAS  Google Scholar 

  20. Li S, Dong Y, Xu L, Xu X, He L, Mai L (2014) Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Adv Mater 26:3545–3553

    Article  CAS  Google Scholar 

  21. Shen W, Wang C, Liu H, Yang W (2013) Towards highly stable storage of sodium ions: a porous Na3V2(PO4)3/C cathode material for sodium-ion batteries. Chemistry 19:14712–14718

    Article  CAS  Google Scholar 

  22. Zhu C, Song K, van Aken PA, Maier J, Yu Y (2014) Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. Nano Lett 14:2175–2180

    Article  CAS  Google Scholar 

  23. Duan W, Zhu Z, Li H, Hu Z, Zhang K, Cheng F, Chen J (2014) Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries. J Mater Chem A 2:8668

    Article  CAS  Google Scholar 

  24. Liu J, Tang K, Song K, van Aken PA, Yu Y, Maier J (2014) Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. Nano 6:5081–5086

    CAS  Google Scholar 

  25. Li H, Bai Y, Wu F, Li Y, Wu C (2015) Budding willow branches shaped Na3V2(PO4)3/C nanofibers synthesized via an electrospinning technique and used as cathode material for sodium ion batteries. J Power Sources 273:784–792

    Article  CAS  Google Scholar 

  26. Zhu C, Yu Y, Gu L, Weichert K, Maier J (2011) Electrospinning of highly electroactive carbon-coated single-crystalline LiFePO4 nanowires. Angew Chem 50:6278–6282

    Article  CAS  Google Scholar 

  27. Li H, Shen L, Yin K, Ji J, Wang J, Wang X, Zhang X (2013) Facile synthesis of N-doped carbon-coated Li4Ti5O12 microspheres using polydopamine as a carbon source for high rate lithium ion batteries. J Mater Chem A 1:7270

    Article  CAS  Google Scholar 

  28. Wang C, Shen W, Liu H (2014) Nitrogen-doped carbon coated Li3V2(PO4)3 derived from a facile in situ fabrication strategy with ultrahigh-rate stable performance for lithium-ion storage. New J Chem 38:430–436

    Article  CAS  Google Scholar 

  29. Muraliganth T, Vadivel Murugan A, Manthiram A (2009) Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries. Chem Commun (Camb) 7360–7362. doi:10.1039/b916376j

  30. Zheng JC, Li XH, Wang ZX, Guo HJ, Hu QY, Peng WJ (2009) Li3V2(PO4)3 cathode material synthesized by chemical reduction and lithiation method. J Power Sources 189:476–479

    Article  CAS  Google Scholar 

  31. Wang J, Wang Z, Li X, Guo H, Xiao W, Huang S, He Z (2012) Comparative investigations of LiVPO4F/C and Li3V2(PO4)3/C synthesized in similar soft chemical route. J Solid State Electrochem 17:1–8

    Article  Google Scholar 

  32. Saravanan K, Mason CW, Rudola A, Wong KH, Balaya P (2013) The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv Energy Mater 3:444–450

    Article  CAS  Google Scholar 

  33. Li G, Jiang D, Wang H, Lan X, Zhong H, Jiang Y (2014) Glucose-assisted synthesis of Na3V2(PO4)3/C composite as an electrode material for high-performance sodium-ion batteries. J Power Sources 265:325–334

    Article  CAS  Google Scholar 

  34. Rui XH, Ding N, Liu J, Li C, Chen CH (2010) Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim Acta 55:2384–2390

    Article  CAS  Google Scholar 

  35. Yin WM, Zhang TT, Zhu Q, Chen QQ, Li GC, Zhang LZ (2015) Synthesis and electrochemical performance of Li3–2xMgxV2(PO4)3/C composite cathode materials for lithium-ion batteries. Trans Nonferrous Metal Soc 25:1978–1985

    Article  CAS  Google Scholar 

  36. Wang D, Chen N, Li M, Wang C, Ehrenberg H, Bie X, Wei Y, Chen G, Du F (2015) Na3V2(PO4)3/C composite as the intercalation-type anode material for sodium-ion batteries with superior rate capability and long-cycle life. J Mater Chem A 3:8636–8642

    Article  CAS  Google Scholar 

  37. Jian Z, Sun Y, Ji X (2015) A new low-voltage plateau of Na3V2(PO4)3 as an anode for Na-ion batteries. Chem Commun (Camb) 51:6381–6383

    Article  CAS  Google Scholar 

  38. Zhang X, Kühnel RS, Schroeder M, Balducci A (2014) Revisiting Li3V2(PO4)3 as an anode—an outstanding negative electrode for high power energy storage devices. J Mater Chem A 2:17906–17913

    Article  CAS  Google Scholar 

  39. Plashnitsa LS, Kobayashi E, Noguchi Y, Okada S, Yamaki JI (2010) Performance of NASICON symmetric cell with ionic liquid electrolyte. J Electrochem Soc 157:A536

    Article  CAS  Google Scholar 

  40. Minakshi M, Singh P (2012) Success and serendipity on achieving high energy density for rechargeable batteries. J Solid State Electrochem 16:2227–2233

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21671096, No. 51364007, No. 21603094, and No. 51502032), Natural Science Foundation of Guangdong Province (No. 2016A030310376), Natural Science Foundation of Guangxi Province (No. 2013GXNSFAA019304l), Natural Science Foundation of Shenzhen (Nos. JCYJ20150630145302231, JCYJ20150331101823677), and the Shenzhen Peacock Plan (KQCX20140522150815065). S.Y. and Y.S.C thank the support from the Guangdong and Shenzhen Innovative Research Team Program (Nos. 2011D052, KYPT20121228160843692).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quanqi Chen or Zhouguang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Nan, B., Shi, Y. et al. Na3V2(PO4)3/C nanofiber bifunction as anode and cathode materials for sodium-ion batteries. J Solid State Electrochem 21, 2985–2995 (2017). https://doi.org/10.1007/s10008-017-3627-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3627-y

Keywords

Navigation