Skip to main content

Advertisement

Log in

Success and serendipity on achieving high energy density for rechargeable batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Rechargeable lithium batteries that use non-aqueous electrolytes may not be suitable for electric vehicle applications, which require safe, inexpensive, and high energy density. In this paper, we showed that reversible lithium intercalation can occur in MnO2 cathode coupled with Zn anode while using LiOH aqueous electrolyte. This new Zn|LiOH|MnO2 aqueous rechargeable cell could operate around 1.5 V for multiple cycles and possibly be used in battery packs, are of low cost, and environmentally benign. However, higher energy density, power density, and cycling life of the Zn|LiOH|MnO2 system are required for exploiting this technology to better compete with the lithium battery counterparts. Serendipitously, high energy density (270 Wh/Kg) that was achieved with physically mixed additives (Bi2O3 and TiB2) on MnO2 is reported. Physically modified cathode containing multiple additives is shown to be superior in energy density and capacity retention compared to that of the additive-free MnO2 or carbon-coated MnO2 using polyvinylpyrrolidone as the source. The role of the additives (Bi2O3 and Bi2O3 + TiB2) in the MnO2 electrode is found to avoid the formation of unwanted (non-rechargeable) products and to decrease the polarization of the electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fetcenko MA, Ovshinsky SR, Reichman B, Young K, Fierro C, Koch J, Zallen A, Mays W, Ouchi T (2007) J Power Sources 165:544–551

    Article  CAS  Google Scholar 

  2. Ramesh TN, Kamath PV (2008) J Power Sources 175:625–629

    Article  CAS  Google Scholar 

  3. Nguyen CC, Song SW (2010) Electrochim Acta 55:3026–3033

    Article  CAS  Google Scholar 

  4. Zhang Y, Wang CY, Tang X (2011) J Power Sources 196:1513–1520

    Article  CAS  Google Scholar 

  5. Wright RB, Christophersen JP, Motloch CG, Belt JR, Ho CD, Battaglia VS, Barnes JA, Duong TQ, Sutula RA (2003) J Power Sources 119:865–869

    Article  Google Scholar 

  6. Choi SS, Lim HS (2002) J Power Sources 111:130–136

    Article  CAS  Google Scholar 

  7. Wu Q, Lu W, Prakash J (2000) J Power Sources 88:237–242

    Article  CAS  Google Scholar 

  8. Li J, Murphy E, Winnick J, Kohl PA (2001) J Power Sources 102:294–301

    Article  CAS  Google Scholar 

  9. Nagasubramanian G, Orendorff CJ (2011) J Power Sources 196:8604–8609

    Article  CAS  Google Scholar 

  10. Minakshi M, Singh P, Issa TB, Thurgate S, De Marco R (2004) J Power Sources 130:254–259

    Article  Google Scholar 

  11. Minakshi M, Pandey A, Blackford M, Ionescu M (2010) Energy Fuel 24:6193–6197

    Article  CAS  Google Scholar 

  12. Minakshi M (2010) Electrochem Solid State Lett 9:A125–A127

    Article  Google Scholar 

  13. Roberts AJ, Slade RCT (2010) Electrochim Acta 55:7460–7469

    Article  CAS  Google Scholar 

  14. Spicak P, Sedlarikova M, Zatloukal M, Novak V, Kazelle J, Vondrak J, Jirak T (2009) J Solid State Electrochem 15:635–639

    Article  Google Scholar 

  15. Kordesch K, Gsellmann J, Peri M, Tomantschger K, Chemelli R (1981) Electrochim Acta 26:1495–1504

    Article  CAS  Google Scholar 

  16. Sajdl B, Micka K, Krtil P (1995) Electrochim Acta 40:2005–2011

    Article  CAS  Google Scholar 

  17. Era A, Takehara Z, Yoshizawa S (1967) Electrochim Acta 12:1199–1212

    Article  CAS  Google Scholar 

  18. Minakshi M, Singh P, Carter M, Prince K (2008) Electrochem Solid State Lett 11:A145–A149

    Article  CAS  Google Scholar 

  19. Li W, Dahn JR (1995) J Electrochem Soc 142:1742–1746

    Article  CAS  Google Scholar 

  20. Minakshi M, Singh P, Mitchell DRG (2007) J Electrochem Soc 154:A109–A113

    Article  CAS  Google Scholar 

  21. Minakshi M (2009) J Solid State Electrochem 13:1209–1214

    Article  CAS  Google Scholar 

  22. Minakshi M, Blackford M, Ionescu M (2011) J Alloys Compd 509:5974–5980

    Article  CAS  Google Scholar 

  23. Minakshi M (2011) Rechargeable battery. PCT (WO/2011/044644)

  24. Im D, Manthiram A, Coffey B (2003) J Electrochem Soc 150:A1651–A1659

    Article  CAS  Google Scholar 

  25. Rahuveer V, Manthiram A (2006) J Power Sources 163:598–603

    Article  Google Scholar 

  26. Tye FL (1985) Electrochim Acta 30:17–23

    Article  CAS  Google Scholar 

  27. Lee JM, Jun YD, Kim DW, Lee YH, Oh SG (2009) Mat Chem Phy 114:549–555

    Article  CAS  Google Scholar 

  28. Bonet F, Delmas V, Grugeon S, Urbina RH, Silvert PY, Elhissen KT (1999) Nanostruct Mater 11:277–1284

    Article  Google Scholar 

  29. Lee JS, Kwon OS, Park SJ, Park EY, You SA, Yoon H, Jang J (2011) ACS Nano 5:7992–8001

    Article  CAS  Google Scholar 

  30. Wroblowa HS, Gupta N (1987) J Electroanal Chem 238:93–102

    Article  CAS  Google Scholar 

  31. Yao YF, Gupta N, Wroblowa HS (1987) J Electroanal Chem 238:107–117

    Google Scholar 

  32. Schultes G, Schmitt M, Goettel D (2006) Freitag Weber O. Sens Actuators A Phys 126:287–291

    Article  Google Scholar 

  33. Bach S, Pereiraramos JP, Baffier N, Messina R (1991) Electrochim Acta 36:595–1603

    Article  Google Scholar 

  34. Qu D, Diehl D, Conway BE, Pell WG, Qian SY (2005) J Appl Electrochem 35:1111–1120

    Article  CAS  Google Scholar 

  35. Battery Types and Characteristics for HEV, ThermoAnalytics, Inc (2007) http://www.thermoanalytics.com Accessed 04 Jan 2012

  36. Minakshi M (2006) Thesis (PhD) Electrochemistry of cathode materials in aqueous lithium hydroxide electrolyte. Murdoch University, Australia

Download references

Acknowledgments

The author Minakshi wishes to acknowledge the Australian Research Council and Centre for Research into Energy for Sustainable Transport (CREST). This research was supported under Australian Research Council’s Discovery Projects funding scheme (DP1092543) and CREST (Center of Excellence, Project 1.1.5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manickam Minakshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minakshi, M., Singh, P. Success and serendipity on achieving high energy density for rechargeable batteries. J Solid State Electrochem 16, 2227–2233 (2012). https://doi.org/10.1007/s10008-012-1655-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1655-1

Keywords

Navigation