Skip to main content
Log in

Highly increased capacitance and thermal stability of anodic oxide films on oxygen-incorporated Zr-Ti alloy

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Heat treatment of Zr-24 at% Ti alloy with barrier-type dielectric anodic oxide films was conducted at 473 K in air to examine the thermal stability of the dielectric oxide films for possible electrolytic capacitor application. The anodic oxide film was formed by anodizing of the alloy at 50 V for 30 min in 0.1 mol dm−3 ammonium pentaborate electrolyte. The anodic oxide film of 125 nm thickness was crystalline, containing both monoclinic and tetragonal ZrO2 phase. It was found that marked thickening of the oxide film with generation of cracks occurred during heat treatment at 473 K. Thus, the dielectric loss was largely increased along with the capacitance increase. In contrast, the anodic oxide film formed on the oxygen-incorporated alloy remained uniform, and no significant increase in dielectric loss was observed even after the heat treatment. The capacitance of the anodic film became as high as 4.8 mF m−2, which was nearly twice that on Ta. The high capacitance was associated with the preferential formation of tetragonal ZrO2 phase in the anodic oxide film on the oxygen-incorporated alloy. Findings indicated that the oxygen-incorporated Zr-Ti alloy is a promising novel material for capacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gray JE, Luan B (2002) Protective coatings on magnesium and its alloys—a critical review. J Alloys Compd 336:88–113

    Article  CAS  Google Scholar 

  2. Thompson GE, Skeldon P, Zhou X, Shimizu K, Habazaki H, Smith CFE (2003) Improving the performance of aerospace alloys. Aircr Eng Aerosp Tec 75(4):372–379

    Article  Google Scholar 

  3. Blawert C, Dietzel W, Ghali E, Song GL (2006) Anodizing treatments for magnesium alloys and their effecton corrosion resistance in various environments. Adv Eng Mater 8(6):511–533

    Article  CAS  Google Scholar 

  4. Watanabe K, Sakairi M, Takahashi H, Hirai S, Yamaguchi S (1999) Formation of Al-Zr composite oxide films on aluminum by sol-gel coating and anodizing. J Electroanal Chem 473(1–2):250–255

    Article  CAS  Google Scholar 

  5. Lu Q, Mato S, Skeldon P, Thompson GE, Masheder D, Habazaki H, Shimizu K (2002) Anodic film growth on tantalum in dilute phosphoric acid solution at 20 and 85°C. Electrochim Acta 47(17):2761–2767

    Article  CAS  Google Scholar 

  6. Pozdeev-Freeman Y, Gladkikh A (2001) Effect of thermal oxide on the crystallization of the anodic Ta2O5 film. J Electron Mater 30(8):931–936

    Article  CAS  Google Scholar 

  7. Freeman Y, Alapatt GF, Harrell WR, Lessner P (2012) Electrical characterization of high voltage polymer tantalum capacitors. J Electrochem Soc 159(10):A1646–A1651

    Article  CAS  Google Scholar 

  8. Freeman Y, Alapatt GF, Harrell WR, Luzinov I, Lessner P, Qazi J (2013) Anomalous currents in low voltage polymer tantalum capacitors. ECS J Solid State Sci Technol 2(11):N197–N204

    Article  CAS  Google Scholar 

  9. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50(13):2904–2939

    Article  CAS  Google Scholar 

  10. Kowalski D, Kim D, Schmuki P (2013) TiO2 nanotubes, nanochannels and mesosponge: self-organized formation and applications. Nano Today 8(3):235–264

    Article  CAS  Google Scholar 

  11. Lee W, Park SJ (2014) Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem Rev 114(15):7487–7556

    Article  CAS  Google Scholar 

  12. Habazaki H, Ogasawara T, Fushimi K, Shimizu K, Nagata S, Izumi T, Skeldon P, Thompson GE (2008) Inhibition of field crystallization of anodic niobium oxide by incorporation of silicon species. Electrochim Acta 53(28):8203–8210

    Article  CAS  Google Scholar 

  13. Habazaki H, Ogasawara T, Konno H, Shimizu K, Nagata S, Skeldon P, Thompson GE (2007) Field crystallization of anodic niobia. Corros Sci 49(2):580–593

    Article  CAS  Google Scholar 

  14. Habazaki H, Ogasawara T, Konno H, Shimizu K, Nagata S, Asami K, Takayama K, Skeldon P, Thompson GE (2006) Suppression of field crystallization of anodic niobia by oxygen. J Electrochem Soc 153(5):B173–B177

    Article  CAS  Google Scholar 

  15. Habazaki H, Ogasawara T, Konno H, Shimizu K, Asami K, Nagata S, Takayama K, Skeldon P, Thompson GE (2006) Field crystallization of anodic niobia on Nb-O substrates. ECS Trans 1(4):343–349

  16. Nagahara K, Sakairi M, Takahashi H, Nagata S, Matsumoto K, Takayama K, Oda Y (2004) Influence of current density on the structure and dielectric properties of anodic oxide films on niobium. J Surf Finish Soc Jpn 55(12):943–951

    Article  CAS  Google Scholar 

  17. Nagahara K, Sakairi M, Takahashi H, Matsumoto K, Takayama K, Oda Y (2004) Change in the structure and dielectric properties of niobium anodic oxide films during potentiostatic anodizing. Elechemistry 72(9):624–632

    CAS  Google Scholar 

  18. Lakhiani DM, Shreir LL (1960) Crystallization of amorphous Nb oxide during anodic oxidation. Nature 188:49–50

    Article  CAS  Google Scholar 

  19. Modestov AD, Davydov AD (1999) Capacitance and photocurrent study of electronic properties of anodic oxide films on Nb and Ta. Evaluation of the ionized donor concentration profile in Nb2O5 film. J Electroanal Chem 460:214–225

    Article  CAS  Google Scholar 

  20. Habazaki H, Ogasawara T, Konno H, Shimizu K, Asami K, Saito K, Nagata S, Skeldon P, Thompson GE (2005) Growth of anodic oxide films on oxygen-containing niobium. Electrochim Acta 50(27):5334–5339

    Article  CAS  Google Scholar 

  21. Habazaki H, Matsuo T, Konno H, Shimizu K, Nagata S, Takayama K, Oda Y, Skeldon P, Thompson GE (2003) Formation of N2O gas bubbles in anodic films on NbNx alloys. Thin Solid Films 429(1–2):159–166

    Article  CAS  Google Scholar 

  22. Habazaki H, Matsuo T, Konno H, Shimizu K, Nagata S, Matsumoto K, Takayama K, Oda Y, Skeldon P, Thompson GE (2003) Influence of silicon species on the electric properties of anodic niobia. Electrochim Acta 48(23):3519–3526

    Article  CAS  Google Scholar 

  23. Habazaki H, Matsuo T, Konno H, Shimizu K, Matsumoto K, Takayama K, Oda Y, Skeldon P, Thompson GE (2003) Analysis of anodic films on Nb and NbNx by glow discharge optical emission spectroscopy. Surf Interface Anal 35(7):618–622

    Article  CAS  Google Scholar 

  24. Aladjem A (1973) Anodic oxidation of titanium and its alloys. J Mater Sci 8:688–704

    Article  CAS  Google Scholar 

  25. Dyer CK, Leach JSL (1978) Breakdown and efficiency of anodic oxide growth on titanium. J Electrochem Soc 125:1032–1038

    Article  CAS  Google Scholar 

  26. Habazaki H, Uozumi M, Konno H, Shimizu K, Skeldon P, Thompson GE (2003) Crystallization of anodic titania on titanium and its alloys. Corros Sci 45(9):2063–2073

    Article  CAS  Google Scholar 

  27. Habazaki H, Uozumi M, Konno H, Nagata S, Shimizu K (2003) Formation of barrier-type amorphous anodic films on Ti-Mo alloys. Surf Coat Technol 169:151–154

    Article  Google Scholar 

  28. Habazaki H, Uozumi M, Konno H, Shimizu K, Nagata S, Asami K, Matsumoto K, Takayama K, Oda Y, Skeldon P, Thompson GE (2003) Influences of structure and composition on growth of anodic oxide films on Ti-Zr alloys. Electrochim Acta 48(20–22):3257–3266

    Article  CAS  Google Scholar 

  29. Habazaki H, Uozumi M, Konno H, Shimizu K, Nagata S, Takayama K, Oda Y, Skeldon P, Thompson GE (2005) Influence of film composition on the structure and dielectric properties of anodic films on Ti-W alloys. J Electrochem Soc 152(8):B263–B270

    Article  CAS  Google Scholar 

  30. Tanvir MT, Fushimi K, Shimizu K, Nagata S, Skeldon P, Thompson GE, Habazaki H (2007) Influence of silicon on the growth of barrier-type anodic films on titanium. Electrochim Acta 52(24):6834–6840

    Article  CAS  Google Scholar 

  31. Di Franco F, Santamaria M, Di Quarto F, Macaluso R, Mosca M, Cali C (2014) Electrochemical fabrication and physicochemical characterization of metal/high-k insulating oxide/polymer/electrolyte junctions. J Phys Chem C 118(51):29973–29980

    Article  CAS  Google Scholar 

  32. Di Franco F, Bocchetta P, Cali C, Mosca M, Santamaria M, Di Quarto F (2011) Electrochemical fabrication of metal/oxide/conducting polymer junction. J Electrochem Soc 158(1):H50–H54

    Article  CAS  Google Scholar 

  33. Habazaki H, Shimizu K, Nagata S, Asami K, Takayama K, Oda Y, Skeldon P, Thompson GE (2005) Inter-relationship between structure and dielectric properties of crystalline anodic zirconia. Thin Solid Films 479(1–2):144–151

    Article  CAS  Google Scholar 

  34. Santamaria M, Di Quarto F, Habazaki H (2008) Influences of structure and composition on the photoelectrochemical behaviour of anodic films on Zr and Zr-20 at.% Ti. Electrochim Acta 53(5):2272–2280

    Article  CAS  Google Scholar 

  35. Climent-Font A, Watjen V, Bax H (1992) Quantitative RBS analysis using RUMP. On the accuracy of the He stopping in Si. Nucle Instr and Meth B71:81–86

    Article  CAS  Google Scholar 

  36. Habazaki H, Koyama S, Aoki Y, Sakaguchi N, Nagata S (2011) Enhanced capacitance of composite anodic ZrO2 films comprising high permittivity oxide nanocrystals and highly resistive amorphous oxide matrix. ACS App Mater Interfaces 3(7):2665–2670

    Article  CAS  Google Scholar 

  37. Koyama S, Aoki Y, Sakaguchi N, Nagata S, Habazaki H (2010) Phase transformation and capacitance enhancement of anodic ZrO2-SiO2. J Electrochem Soc 157(12):C444–C451

    Article  CAS  Google Scholar 

  38. Brossmann U, Wurschum R, Sodervall U, Schaefer HE (1999) Oxygen diffusion in ultrafine grained monoclinic ZrO2. J Appl Phys 85(11):7646–7654

    Article  CAS  Google Scholar 

  39. Pringle JPS (1980) The anodic oxidation of superimposed metallic layers: theory. Electrochim Acta 25:1423–1437

    Article  CAS  Google Scholar 

  40. Koyama S, Aoki Y, Nagata S, Habazaki H (2011) Formation and dielectric properties of anodic oxide films on Zr-Al alloys. J Solid State Electrochem 15:2221–2229

    Article  CAS  Google Scholar 

  41. Koyama S, Aoki Y, Nagata S, Kimura H, Habazaki H (2010) Amorphous-to-crystalline transition of silicon-incorporated anodic ZrO2 and improved dielectric properties. Electrochim Acta 55(9):3144–3151

    Article  CAS  Google Scholar 

  42. San Andres E, Toledano-Luque M, del Prado A, Navacerrada MA, Martil I, Gonzalez-Diaz G, Bohne W, Rohrich J, Strub E (2005) Physical properties of high pressure reactively sputtered TiO2. J Vacuum Sci Technol A 23(6):1523–1530

    Article  CAS  Google Scholar 

  43. Thompson DP, Dickins AM, Thorp JS (1992) The dielectric-properties of zirconia. J Mater Sci 27(8):2267–2271

    Article  CAS  Google Scholar 

  44. Pozdeev-Freeman Y, Gladkikh A, Karpovski M, Palevski A (1998) Effect of dissolved oxygen on thermal oxidation in Ta2O5/Ta sandwiches. J Electron Mater 27:1034–1037

    Article  CAS  Google Scholar 

  45. Pozdeev-Freeman Y, Rozenberg Y, Gladkikh A, Karpovski M, Palevski A (1998) Critical oxygen content in porous anodes of solid tantalum capacitors. J Mater Sci Mater Electron 9(4):309–311

    Article  CAS  Google Scholar 

  46. Vermilyea DA (1955) The crystallization of anodic tantalum oxide films in the presence of a strong electric field. J Electrochem Soc 102:207–214

    Article  CAS  Google Scholar 

  47. Nagahara K, Sakairi M, Takahashi H, Matsumoto K, Takayama K, Oda Y (2007) Mechanism of formation and growth of sunflower-shaped imperfections in anodic oxide films on niobium. Electrochim Acta 52(5):2134–2145

    Article  CAS  Google Scholar 

  48. Su X, Viste M, Hossick-Schott J, Yang L, Sheldon BW (2015) Reassessment of degradation mechanisms in anodic tantalum oxide capacitors under high electric fields. J Mater Sci 50(2):960–969

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported in part by Nanotechnology Platform Program of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Habazaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habazaki, H., Kobayashi, K., Tsuji, E. et al. Highly increased capacitance and thermal stability of anodic oxide films on oxygen-incorporated Zr-Ti alloy. J Solid State Electrochem 21, 2807–2816 (2017). https://doi.org/10.1007/s10008-017-3607-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3607-2

Keywords

Navigation