Skip to main content
Log in

Formation and dielectric properties of anodic oxide films on Zr–Al alloys

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Zr–Al alloys containing up to 26 at.% aluminum, prepared by magnetron sputtering, have been anodized in 0.1 mol dm−3 ammonium pentaborate electrolyte, and the structure and dielectric properties of the resultant anodic oxide films have been examined by grazing incidence X-ray diffraction, transmission electron microscopy, Rutherford backscattering spectroscopy, and AC impedance spectroscopy. The anodic oxide film formed on zirconium consists of monoclinic and tetragonal ZrO2 with the former being a major phase. Two-layered anodic oxide films, comprising an outer thin amorphous layer and an inner main layer of crystalline tetragonal ZrO2 phase, are formed on the Zr–Al alloys containing 5 to 16 at.% aluminum. Further increase in the aluminum content to 26 at.% results in the formation of amorphous oxide layer throughout the thickness. The anodic oxide films become thin with increasing aluminum content, while the relative permittivity of anodic oxide shows a maximum at the aluminum content of 11 at.%. Due to major contribution of permittivity enhancement, the maximum capacitance of the anodic oxide films is obtained on the Zr–11 at.% Al alloy, being 1.7 times than on zirconium at the formation voltage of 100 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pringle JPS (1980) Electrochim Acta 25:1423–1437

    Article  CAS  Google Scholar 

  2. Young L, Smith DJ (1979) J ElectrochemSoc 126:765–768

    Article  CAS  Google Scholar 

  3. Mott NF (1987) Phil Mag B 55:117–129

    Article  CAS  Google Scholar 

  4. Aladjem A (1973) J Mater Sci 8:688–704

    Article  CAS  Google Scholar 

  5. Dyer CK, Leach JSL (1978) J Electrochem Soc 125:1032–1042

    Article  CAS  Google Scholar 

  6. Habazaki H, Uozumi M, Konno H, Shimizu K, Skeldon P, Thompson GE (2003) Corros Sci 45:2063–2073

    Article  CAS  Google Scholar 

  7. Habazaki H, Shimizu K, Skeldon P, Thompson GE, Wood GC (1997) Proc R Soc Lond A 453:1593–1609

    Article  CAS  Google Scholar 

  8. Habazaki H, Skeldon P, Thompson GE, Wood GC, Shimizu K (1996) Phil Mag B 73:297–308

    Article  CAS  Google Scholar 

  9. Habazaki H, Uozumi M, Konno H, Shimizu K, Nagata S, Asami K, Matsumoto K, Takayama K, Oda Y, Skeldon P, Thompson GE (2003) Electrochim Acta 48:3257–3266

    Article  CAS  Google Scholar 

  10. Habazaki H, Uozumi M, Konno H, Shimizu K, Nagata S, Takayama K, Oda Y, Skeldon P, Thompson GE (2005) J Electrochem Soc 152:B263–B270

    Article  CAS  Google Scholar 

  11. Habazaki H, Shimizu K, Nagata S, Asami K, Takayama K, Oda Y, Skeldon P, Thompson GE (2005) Thin Solid Films 479:144–151

    Article  CAS  Google Scholar 

  12. Koyama S, Aoki Y, Nagata S, Kimura H, Habazaki H (2010) Electrochim Acta 55:3144–3151

    Article  CAS  Google Scholar 

  13. Wang T, Jin ZP, Zhao JC (2001) J Phase Equilib 22:544–551

    CAS  Google Scholar 

  14. Hashimoto K, Park PY, Kim JH, Yoshioka H, Mitsui H, Akiyama E, Habazaki H, Kawashima A, Asami K, Grzesik Z, Mrowec S (1995) Mater Sci Eng A 198:1–10

    Article  Google Scholar 

  15. Koyama S, Aoki Y, Sakaguchi N, Nagata S, Habazaki H (2010) J Electrochem Soc 157:C444–C451

    Google Scholar 

  16. Patrito EM, Torresi RM, Leiva EPM, Macagno VA (1990) J Electrochem Soc 137:524–530

    Article  CAS  Google Scholar 

  17. Zhao XY, Vanderbilt D (2002) Phys Rev B 65:075105

    Article  Google Scholar 

  18. Chen Y, Sellar JR (1996) Solid State Ionics 86–8:207–211

    Article  Google Scholar 

  19. Lanagan MT, Yamamoto JK, Bhalla A, Sankar SG (1989) Mater Lett 7:437–440

    Article  CAS  Google Scholar 

  20. Wood GC, Skeldon P, Thompson GE, Shimizu K (1996) J Electrochem Soc 143:74–83

    Article  CAS  Google Scholar 

  21. Habazaki H, Shimizu K, Nagata S, Skeldon P, Thompson GE, Wood GC (2002) Corros Sci 44:1047–1055

    Article  CAS  Google Scholar 

  22. Habazaki H, Shimizu K, Nagata S, Skeldon P, Thompson GE, Wood GC (2002) J Electrochem Soc 149:B70–B74

    Article  CAS  Google Scholar 

  23. Habazaki H, Matsuo T, Konno H, Shimizu K, Nagata S, Matsumoto K, Takayama K, Oda Y, Skeldon P, Thompson GE (2003) Electrochim Acta 48:3519–3526

    Article  CAS  Google Scholar 

  24. Shimizu K, Kobayashi K, Thompson GE, Skeldon P, Wood GC (1996) Philos Mag B 73:461–485

    Article  CAS  Google Scholar 

  25. Habazaki H, Skeldon P, Shimizu K, Thompson GE, Wood GC (1995) J Phys D Appl Phys 28:2612–2618

    Article  CAS  Google Scholar 

  26. Shimizu K, Kobayashi K (1995) J Suf Finish Soc Jpn 46:402–409

    Article  CAS  Google Scholar 

  27. Shimizu K, Thompson GE, Wood GC, Xu Y (1982) Thin Solid Films 88:255–262

    Article  CAS  Google Scholar 

  28. Brown F, Mackintosh WD (1973) J Electrochem Soc 120:1096–1102

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The present work was supported in part by the Global COE Program (Project No. B01: Catalysis as the Basis for Innovation in Materials Science) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Habazaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koyama, S., Aoki, Y., Nagata, S. et al. Formation and dielectric properties of anodic oxide films on Zr–Al alloys. J Solid State Electrochem 15, 2221–2229 (2011). https://doi.org/10.1007/s10008-010-1238-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1238-y

Keywords

Navigation