Skip to main content
Log in

Ferroelectricity and reliability performance of HfZrO films by N-plasma treatment on TiN electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The instability of TiN/HfZrO/TiN ferroelectric capacitors becomes a dominant obstacle in its practical application. To improve this problem, the effects of N-plasma treatment at both top and bottom TiN interfaces are investigated on the ferroelectricity behaviors and reliability characteristics of TiN/HfZrO/TiN ferroelectric capacitors. The results show that the high remanent polarization and large dielectric constant in the capacitors can be obtained by treating at the both top and bottom TiN interfaces. The wake-up and fatigue effects can be effectively suppressed and the lower leakage current can be acquired with extending the treatment time. The XPS analyses show that the oxygen vacancies in HfZrO film can be reduced efficiently by extending treatment time. The cycling test confirms that the better ferroelectricity characteristics can be measured by treating at two interfaces than that of single interface. The N-plasma treatment at both top and bottom TiN interfaces provides a new approach for the realization of highly reliable TiN/HfZrO/TiN ferroelectric capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All datasets generated for this study are included in the article material. I would like to declare on behalf of my co-authors that this manuscript has not been published or presented elsewhere in part or entirety and is not under consideration by another journal.

References

  1. A. Sharma, K. Roy, 1T Non-volatile memory design using sub-10nm ferroelectric FETs. IEEE Electron Device Lett. 39, 359–362 (2018). https://doi.org/10.1109/LED.2018.2797887

    Article  CAS  Google Scholar 

  2. J. Li, J.R. Zhou, G.Q. Han, Y. Liu, Y. Peng, J.C. Zhang, Q.Q. Sun, D.W. Zhang, Y. Hao, Negative capacitance ge PFETs for performance improvement: impact of thickness of HfZrOx. IEEE Trans. Electron Devices 65, 1217–1222 (2018). https://doi.org/10.1109/TED.2018.2791420

    Article  CAS  Google Scholar 

  3. J. Li, B. Nagaraj, H. Liang, W. Cao, C.H. Lee, R. Ramesh, Ultrafast polarization switching in thin-film ferroelectrics. Appl. Phys. Lett. 84, 1174–1176 (2004). https://doi.org/10.1063/1.1644917

    Article  CAS  Google Scholar 

  4. H. Chen, L. Tang, L. Liu, Y. Chen, H. Luo, X. Yuan, D. Zhang, Significant improvement of ferroelectricity and reliability in Hf0.5Zr0.5O2 films by inserting an ultrathin Al2O3 buffer layer. Appl. Surf. Sci. 542, 148737 (2021). https://doi.org/10.1016/j.apsusc.2020.148737

    Article  CAS  Google Scholar 

  5. Z. Zheng, R. Cheng, Y. Qu, X. Yu, W. Liu, Z. Chen, B. Chen, Q. Sun, D.W. Zhang, Y. Zhao, Real-time polarization switch characterization of Hfzro4 for negative capacitance field-effect transistor applications. IEEE Electron Device Lett. 39, 1469–1472 (2018). https://doi.org/10.1109/LED.2018.2861729

    Article  CAS  Google Scholar 

  6. J. Zhou, G. Han, N. Xu, J. Li, Y. Peng, Y. Liu, J. Zhang, Q.-Q. Sun, D.W. Zhang, Y. Hao, Incomplete dipoles flipping produced near hysteresis-free negative capacitance transistors. IEEE Electron Device Lett. 40, 329–332 (2019). https://doi.org/10.1109/LED.2018.2886426

    Article  CAS  Google Scholar 

  7. J. Muller, T.S. Boscke, U. Schroder, S. Mueller, D. Brauhaus, U. Bottger, L. Frey, T. Mikolajick, Ferroelectricity in Simple Binary ZrO2 and HfO2. Nano Lett. 12, 4318–4323 (2012). https://doi.org/10.1021/nl302049k

    Article  CAS  Google Scholar 

  8. H.P. Min, J.K. Han, J.K. Yu, W. Lee, T. Moon, C.S. Hwang, Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature. Appl. Phys. Lett. 102, 102903 (2013). https://doi.org/10.1063/1.4811483

    Article  CAS  Google Scholar 

  9. F.L. Faita, J.P.B. Silva, M. Pereira, M.J.M. Gomes, Enhanced resistive switching and multilevel behavior in bilayered HfAlO/HfAlOx structures for non-volatile memory applications. Appl. Phys. Lett. 107, 242105 (2015). https://doi.org/10.1063/1.4937801

    Article  CAS  Google Scholar 

  10. W.L. Zhang, Y.H. Mao, L. Cui, M.H. Tang, P.Y. Su, X.J. Long, Y.G. Xiao, S.A. Yan, Impact of the radiation effect on the energy storage density and wake-up behaviors of antiferroelectric-like Al-doped HfO2 thin films. Phys. Chem. Chem. Phys. 22, 21893–21899 (2020). https://doi.org/10.1039/d0cp04196c

    Article  CAS  Google Scholar 

  11. S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U. Schroeder, T. Mikolajick, Incipient ferroelectricity in Al-Doped HfO2 thin films. Adv. Funct. Mater. 22, 2412–2417 (2012). https://doi.org/10.1002/adfm.201103119

    Article  CAS  Google Scholar 

  12. S. Starschich, D. Griesche, T. Schneller, R. Waser, U. Böttger, Chemical solution deposition of ferroelectric yttrium-doped hafnium oxide films on platinum electrodes. Appl. Phys. Lett. 104, 202903 (2014). https://doi.org/10.1063/1.4879283

    Article  CAS  Google Scholar 

  13. J. Müller, U. Schröder, T.S. Böscke, I. Müller, U. Böttger, L. Wilde, J. Sundqvist, M. Lemberger, P. Kücher, T. Mikolajick, L. Frey, Ferroelectricity in yttrium-doped hafnium oxide. J. Appl. Phys. 110, 114113 (2011). https://doi.org/10.1063/1.3667205

    Article  CAS  Google Scholar 

  14. A.G. Chernikova, M.G. Kozodaev, D.V. Negrov, E.V. Korostylev, M.H. Park, U. Schroeder, C.S. Hwang, A.M. Markeev, Improved ferroelectric switching endurance of la-doped Hf0.5Zr0.5O2 thin films. ACS Appl. Mater. Interfaces 10, 2701–2708 (2018). https://doi.org/10.1021/acsami.7b15110

    Article  CAS  Google Scholar 

  15. U. Schroeder, C. Richter, M.H. Park, T. Schenk, M. Pesic, M. Hoffmann, F.P.G. Fengler, D. Pohl, B. Rellinghaus, C. Zhou, C.C. Chung, J.L. Jones, T. Mikolajick, Lanthanum-doped hafnium oxide: a robust ferroelectric material. Inorg. Chem. 57, 2752–2765 (2018). https://doi.org/10.1021/acs.inorgchem.7b03149

    Article  CAS  Google Scholar 

  16. H.B. Kim, M. Jung, Y. Oh, S.W. Lee, D. Suh, J.H. Ahn, Superior and stable ferroelectric properties of hafnium-zirconium-oxide thin films deposited via atomic layer deposition using cyclopentadienyl-based precursors without annealing. Nanoscale 13, 8524–8530 (2021)

    Article  CAS  Google Scholar 

  17. G. Karbasian, R. dos Reis, A.K. Yadav, A.J. Tan, C. Hu, S. Salahuddin, Stabilization of ferroelectric phase in tungsten capped Hf0.8Zr0.2O2. Appl. Phys. Lett. 111, 022907 (2017). https://doi.org/10.1063/1.4993739

    Article  CAS  Google Scholar 

  18. R. Cao, Y. Wang, S. Zhao, Y. Yang, X. Zhao, W. Wang, X. Zhang, H. Lv, Q. Liu, M. Liu, Effects of capping electrode on ferroelectric properties of Hf0.5Zr0.5O2 thin films. IEEE Electron Device Lett. 39, 1207–1210 (2018). https://doi.org/10.1109/led.2018.2846570

    Article  CAS  Google Scholar 

  19. J.R. Zhou, G.Q. Han, Y. Peng, Y. Liu, J.C. Zhang, Q.Q. Sun, D.W. Zhang, Y. Hao, Ferroelectric negative capacitance GeSn PFETs with sub-20 mV/decade subthreshold swing. IEEE Electron Device Lett. 38, 1157–1160 (2017). https://doi.org/10.1109/LED.2017.2714178

    Article  CAS  Google Scholar 

  20. P.D. Lomenzo, Q. Takmeel, C. Zhou, C.M. Fancher, E. Lambers, N.G. Rudawski, J.L. Jones, S. Moghaddam, T. Nishida, TaN interface properties and electric field cycling effects on ferroelectric Si-doped HfO2 thin films. J. Appl. Phys. 117, 134105 (2015). https://doi.org/10.1063/1.4916715

    Article  CAS  Google Scholar 

  21. T. Schenk, M. Hoffmann, J. Ocker, M. Pesic, T. Mikolajick, U. Schroeder, Complex internal bias fields in ferroelectric hafnium oxide. ACS Appl. Mater. Interfaces 7, 20224–20233 (2015). https://doi.org/10.1021/acsami.5b05773

    Article  CAS  Google Scholar 

  22. D. Zhou, J. Xu, Q. Li, Y. Guan, F. Cao, X. Dong, J. Müller, T. Schenk, U. Schröder, Wake-up effects in Si-doped hafnium oxide ferroelectric thin films. Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4829064

    Article  Google Scholar 

  23. M.H. Park, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, Y.H. Lee, S.D. Hyun, C.S. Hwang, Study on the internal field and conduction mechanism of atomic layer deposited ferroelectric Hf0.5Zr0.5O2 thin films. J. Mater. Chem. C 3, 6291–6300 (2015). https://doi.org/10.1039/C5TC01074H

    Article  CAS  Google Scholar 

  24. M.H. Park, H.J. Kim, Y.J. Kim, Y.H. Lee, T. Moon, K.D. Kim, S.D. Hyun, F. Fengler, U. Schroeder, C.S. Hwang, Effect of Zr content on the wake-up effect in Hf1-xZrxO2 films ACS Appl. Mater. Interfaces 8(15466), 15475 (2016). https://doi.org/10.1021/acsami.6b03586

    Article  CAS  Google Scholar 

  25. E.D. Grimley, T. Schenk, X. Sang, M. Pešić, U. Schroeder, T. Mikolajick, J.M. LeBeau, Structural changes underlying field-cycling phenomena in ferroelectric HfO2 thin films. Adv. Funct. Mater. 2, 1600173 (2016). https://doi.org/10.1002/aelm.201600173

    Article  CAS  Google Scholar 

  26. Y. Goh, S.H. Cho, S.K. Park, S. Jeon, Oxygen vacancy control as a strategy to achieve highly reliable hafnia ferroelectrics using oxide electrode. Nanoscale 12, 9024–9031 (2020). https://doi.org/10.1039/d0nr00933d

    Article  CAS  Google Scholar 

  27. H.J. Kim, M.H. Park, Y.J. Kim, Y.H. Lee, W. Jeon, T. Gwon, T. Moon, K.D. Kim, C.S. Hwang, Grain size engineering for ferroelectric Hf0.5Zr0.5O2 films by an insertion of Al2O3 interlayer. Appl Phys. Lett. 105, 192903 (2014). https://doi.org/10.1063/1.4902072

    Article  CAS  Google Scholar 

  28. B.Y. Kim, S.H. Kim, H.W. Park, Y.B. Lee, S.H. Lee, M. Oh, S.K. Ryoo, I.S. Lee, S. Byun, D. Shim, M.H. Park, C.S. Hwang, Improved ferroelectricity in Hf0.5Zr0.5O2 by inserting an upper HfOxNy interfacial layer. Appl. Phys. Lett. (2021). https://doi.org/10.1063/5.0065571

    Article  Google Scholar 

  29. K.-Y. Chen, P.-H. Chen, R.-W. Kao, Y.-X. Lin, Y.-H. Wu, Impact of plasma treatment on reliability performance for HfZrOx-based metal-ferroelectric-metal capacitors. IEEE Electron Device Lett. 39, 87–90 (2018). https://doi.org/10.1109/LED.2017.2771390

    Article  Google Scholar 

  30. Y. Li, R. Liang, B. Xiong, H. Liu, R. Zhao, J. Li, T. Liu, Y. Pang, H. Tian, Y. Yang, T.-L. Ren, TiNx/Hf0.5Zr0.5O2/TiNx ferroelectric memory with tunable transparency and suppressed wake-up effect. Appl. Phys. Lett. (2019). https://doi.org/10.1063/1.5083231

    Article  Google Scholar 

  31. M. Hyuk Park, H. Joon Kim, Y. Jin Kim, T. Moon, C. Seong Hwang, The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity. Appl. Phys. Lett. 104, 072901 (2014). https://doi.org/10.1063/1.4866008

    Article  CAS  Google Scholar 

  32. T. Kim, J. Park, B.-H. Cheong, S. Jeon, Effects of high pressure nitrogen annealing on ferroelectric Hf0.5Zr0.5O2 films. Appl. Phys. Lett. 112, 092906 (2018). https://doi.org/10.1063/1.5003369

    Article  CAS  Google Scholar 

  33. R. Zazpe, M. Ungureanu, F. Golmar, P. Stoliar, R. Llopis, F. Casanova, D.F. Pickup, C. Rogero, L.E. Hueso, Resistive switching dependence on atomic layer deposition parameters in HfO2-based memory devices. J. Mater. Chem. C 2, 3204–3211 (2014). https://doi.org/10.1039/c3tc31819b

    Article  CAS  Google Scholar 

  34. P.E. West, P.M. George, An x-ray photoelectron spectroscopy investigation of the incorporation of surface oxides into bulk zirconium. J. Vac. Sci. Technol. A 5, 1124–1127 (1987). https://doi.org/10.1116/1.574814

    Article  CAS  Google Scholar 

  35. P. Carvalho, J.M. Chappé, L. Cunha, S. Lanceros-Méndez, P. Alpuim, F. Vaz, E. Alves, C. Rousselot, J.P. Espinós, A.R. González-Elipe, Influence of the chemical and electronic structure on the electrical behavior of zirconium oxynitride films. J. Appl. Phys. 103, 104907 (2008). https://doi.org/10.1063/1.2927494

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Nature Science Foundation of China (Grant Nos. 61874036, 62174041 and 51802032), Guangxi Innovation Research Team Project (Grant No. 2018GXNSFGA281004), Guangxi Science and Technology Planning Project (Grant Nos. AA19254015, AD19245066 and 2021AC19201), Opening Foundation of the State Key Laboratory of Advanced Materials and Electronic Components (Grant No. FHR-JS-201909007), Guilin University of Electronic Technology (Grant Nos. DH2020013 and DH201906), GUET Excellent Graduate Thesis (Grant No. YXYJRX01), and State Key Laboratory of ASIC & System (Grant No. KVH1233021).

Author information

Authors and Affiliations

Authors

Contributions

YL was the leader of the work and responsible for the main of experiment and paper writing. XL, TS, and PW were responsible for single step of the fabrication process. YC and FZ were responsible for device testing. TF and TF were mainly engaged in picture editing and related data processing. HL contributed to the modification and suggestion in this paper.

Corresponding authors

Correspondence to Haiou Li or Xingpeng Liu.

Ethics declarations

Conflict of interest

We have no conflict of interest whatsoever, with anybody.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Feng, T., Sun, T. et al. Ferroelectricity and reliability performance of HfZrO films by N-plasma treatment on TiN electrode. J Mater Sci: Mater Electron 33, 23341–23350 (2022). https://doi.org/10.1007/s10854-022-09096-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09096-7

Navigation