Skip to main content
Log in

Self-catalytic synthesis of hydrophilic polypyrrole/tellurium nanocomposite and its capacitance performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A hydrophilic polypyrrole/tellurium (PPy/Te) nanocomposite was synthesized by a facile approach in which H2TeO3 was used as the oxidizing agent of pyrrole and then the elemental Te formed in situ catalyzed the polymerization of pyrrole. The morphology and structure of the products were characterized by a series of testing technology. The electrochemical property and impedance of the PPy/Te nanocomposite were studied by cyclic voltammetry and electrochemical impedance spectroscopy, respectively. Significantly, the charge-discharge measurement results show that the PPy/Te nanocomposite has high specific capacitance (2488 F/g, at 2 A/g) and good cyclability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sust Energ Rev 58:1189–1206

    Article  Google Scholar 

  2. Wang SM, Gao TT, Li Y, Li SC, Zhou GW (2017) Fabrication of vesicular polyaniline using hard templates and composites with graphene for supercapacitor. J Solid State Electrochem 21:705–714

    Article  CAS  Google Scholar 

  3. Wang LX, Li XG, Yang YL (2001) Preparation, properties and applications of polypyrroles. React Funct Polym 47:125–139

    Article  CAS  Google Scholar 

  4. Rauno T, Rudolf K, Alvo A, Tarmo T (2013) Direct chemical synthesis of pristine polypyrrole hydrogels and their derived aerogels for high power density energy storage applications. J Mater Chem A 1:15216–15219

    Article  Google Scholar 

  5. Song Y, Xu JL, Liu XX (2014) Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode. J Power Sources 249:48–58

    Article  CAS  Google Scholar 

  6. Zuo XP, Zhang YL, Si L, Zhou B, Zhao B, Zhu LH, Jiang XQ (2016) One-step electrochemical preparation of sulfonated graphene/polypyrrole composite and its application to supercapacitor. J Alloy Compd 688:140–148

    Article  CAS  Google Scholar 

  7. Bahloul A, Nessark B, Briot E, Groult H, Mauger A, Zaghib K, Julien CM (2013) Polypyrrole-covered MnO2 as electrode material for supercapacitor. J Power Sources 240:267–272

    Article  CAS  Google Scholar 

  8. Li J, Que TL, Huang JB (2013) Synthesis and characterization of a novel tube-in-tube nanostructured PPy/MnO2/CNTs composite for supercapacitor. Mater Res Bull 48:747–751

    Article  CAS  Google Scholar 

  9. Wang JG, Wei BQ, Kang FY (2014) Facile synthesis of hierarchical conducting polypyrrole nanostructures via a reactive template of MnO2 and their application in supercapacitors. RSC Adv 4:199–202

    Article  CAS  Google Scholar 

  10. Tsai ML, Chen PJ, Do JS (2004) Preparation and characterization of Ppy/Al2O3/Al used as a solid-state capacitor. J Power Sources 133:302–311

    Article  CAS  Google Scholar 

  11. Wu XM, Wang QG, Zhang WZ, Wang Y, Chen WX (2016) Nanorod structure of Polypyrrole-covered MoO3 for supercapacitors with excellent cycling stability. Mater Lett 182:121–124

    Article  CAS  Google Scholar 

  12. Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Sci 293:1298

    Article  Google Scholar 

  13. Cao JL, Safdar M, Wang ZX, He J (2013) High-performance flexible supercapacitor electrodes based on Te nanowire arrays. J Mater Chem A 1:10024–10029

    Article  CAS  Google Scholar 

  14. Li XG, Li A, Huang MR, Liao YZ, Lu YG (2010) Efficient and scalable synthesis of pure polypyrrole nanoparticles applicable for advanced nanocomposites and carbon nanoparticles. J Phys Chem C 114:19244–19255

    Article  CAS  Google Scholar 

  15. Yan CZ, Raghavan CM, Kang DJ (2014) Photocatalytic properties of shape-controlled ultra-long elemental Te nanowires synthesized via a facile hydrothermal method. Mater Lett 116:341–344

    Article  CAS  Google Scholar 

  16. Cao GS, Dong CW, Wang L, Liu ZS (2009) Selected-control synthesis of Te nanowires and Te/C nanocables by adjusting hydrothermal temperature. Mater Lett 63:1778–1780

    Article  CAS  Google Scholar 

  17. Mi HY, Zhang XG, Ye XG, Yang SD (2008) Preparation and enhanced capacitance of core-shell polypyrrole/polyaniline composite electrode for supercapacitors. J Power Sources 176:403–409

    Article  CAS  Google Scholar 

  18. Pires BC, Dutra FVA, Nascimento TA, Borges KB (2017) Preparation of PPy/cellulose fibre as an effective potassium diclofenac adsorbent. React Funct Polym 113:40–49

    Article  CAS  Google Scholar 

  19. Tang GW, Qian Q, Wen X, Zhou GX, Chen XD, Sun M, Chen DD, Yang ZM (2015) Phosphate glass-clad tellurium semiconductor core optical fibers. J Alloy Compd 633:1–4

    Article  CAS  Google Scholar 

  20. Navale ST, Mane AT, Ghanwat AA, Mulik AR, Patil VB (2014) Camphor sulfonic acid (CSA) doped polypyrrole (PPy) films: measurement of microstructural and optoelectronic properties. Measurement 50:363–369

    Article  Google Scholar 

  21. Li S, Shu KW, Zhao C, Wang CY, Guo ZP, Wallace G, Liu HK (2014) One-step synthesis of graphene/polypyrrole nanofiber composites as cathode material for a biocompatible zinc/polymer battery. ACS Appl Mater Interfaces 6:16679–16686

    Article  CAS  Google Scholar 

  22. Liu WH, He SL, Wang Y, Dou Y, Pan DJ, Feng Y, Qian G, Xu JZ, Miao SD (2014) PEG-assisted synthesis of homogeneous carbon nanotubes-MoS2-carbon as a counter electrode for dye-sensitized solar cells. Electrochim Acta 144:119–126

    Article  CAS  Google Scholar 

  23. Ning XT, Zhong WB, Li SC, Wan L (2014) A novel approach for the synthesis of monodispere polypyrrole nanospheres. Mater Lett 117:294–297

    Article  CAS  Google Scholar 

  24. Liu Y, Wang JW, Xu YH, Zhu YJ, Bigiob D, Wang CS (2014) Lithium-tellurium batteries based on tellurium/porous carbon composite. J Mater Chem A 2:12201–11207

    Article  CAS  Google Scholar 

  25. Mao SL, Zhao JJ, Zhang SY, Niu HL, Jin BK, Tian YP (2009) Synthesis and electrochemical properties of PbSe nanotubes. J Phys Chem C 113:18091–18096

    Article  CAS  Google Scholar 

  26. Wang JJ, Zhang XM, Ke R, Zhang SY, Mao CJ, Niu HL, Song JM, Li SL, Tian YP (2016) Self-catalytic synthesis of soluble polyaniline/tellurium nanocomposite and its nonlinear optical property. Semicond Sci Technol 31:055011

    Article  Google Scholar 

  27. Shen M, Zhang JJ, Wang LJ, Min JH, Wang L, Liang XY, Huang J, Tang K, Liang W, Meng H (2015) Investigation on the surface treatments of CdMnTe single crystals. Mater Sci Sem Proc 31:536–542

    Article  CAS  Google Scholar 

  28. MacDiarmid AG, Epstein AJ (1995) Secondary doping in polyaniline. Syn Met 88:85–92

    Article  Google Scholar 

  29. Zuo PF, Zhang SY, Jin BK, Tian YP, Yang JX (2008) Rapid synthesis and electrochemical property of Ag2Te Nanorods. J Phys Chem C 112:14825–14829

    Article  CAS  Google Scholar 

  30. Wang JJ, Ke R, Zhang XM, Zhang SY, Song JM, Mao CJ, Niu HL, Li SL, Tian YP (2016) Self-catalytic synthesis of soluble polythiophene/tellurium nanocomposite and its nonlinear optical property. Colloid Polym Sci 294:1259–1267

    Article  CAS  Google Scholar 

  31. Liu ZP, Li S, Yang Y, Hu ZK, Peng S, Liang JB, Qian YT (2003) Shape-controlled synthesis and growth mechanism of one-dimensional nanostructures of trigonal tellurium. New J Chem 27:1748–1752

    Article  CAS  Google Scholar 

  32. Biçer M, Şişman İ (2010) Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution. Powder Technol 198:279–284

    Article  Google Scholar 

  33. Yan YL, Wang J, Hojamberdiev M, Lu ZX, Ren B, Xu YH (2014) Effect of SDS on morphology tailoring of GdVO4:Eu3+ powders under hydrothermal conditions in a wide pH range. J Alloy Compd 597:282–290

    Article  CAS  Google Scholar 

  34. Yuan P, Zhang N, Zhang D, Liu T, Chen LM, Liu XH, Ma RZ, Qiu GZ (2014) Fabrication of nickel-foam-supported layered zinc-cobalt hydroxide nanoflakes for high electrochemical performance in supercapacitors. Chem Commun 50:11188–11191

    Article  CAS  Google Scholar 

  35. Tan X, Gao HY, Yang M, Luan Y, Dong WJ, Jin ZK, Yu J, Qi Y, Fen YH, Wang G (2014) Synthesize of hierarchical sisal-like cobalt hydroxide and its electrochemical applications. J Alloys Compd 608:278–282

    Article  CAS  Google Scholar 

  36. Yao W, Zhou H, Lu Y (2013) Synthesis and property of novel MnO2@polypyrrole coaxial nanotubes as electrode material for supercapacitors. J Power Sources 241:359–366

    Article  CAS  Google Scholar 

  37. Paulenova A, Creager SE, Navratil JD, Wei Y (2002) Redox potentials and kinetics of the Ce3þ/Ce4þ redox reaction and solubility of cerium sulfates in sulfuric acid solutions. J Power Sources 109:431–438

    Article  CAS  Google Scholar 

  38. Lu XJ, Dou H, Yuan CZ, Yang SD, Hao L, Zhang F, Shen LF, Zhanga LJ, Zhang XG (2012) Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors. J Power Sources 197:319–324

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports by National Natural Science Foundation of China (Nos. 21275006, 21471001, 21575001, 21071002, 21175001, 51432001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yin, H., Chen, J. et al. Self-catalytic synthesis of hydrophilic polypyrrole/tellurium nanocomposite and its capacitance performance. J Solid State Electrochem 21, 2381–2391 (2017). https://doi.org/10.1007/s10008-017-3602-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3602-7

Keywords

Navigation