Skip to main content
Log in

Towards stabilization of the potential response of Mn(III) tetraphenylporphyrin-based solid-state electrodes with selectivity for salicylate ions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We report a new type of solid-state electrode (type I) of a simple design with polyvinyl chloride membranes based on Mn(III) tetraphenylporphyrin and with graphite as the electronically conducting substrate. Enlargement of the membrane/graphite contact area by soaking graphite in the plasticizer with subsequent conditioning of the electrode at 30 °C allowed us to shorten the time required to achieve steady potential values of the sensors to just 3 days. These electrodes do not require a specially added RedOx system in the transducer layer. Stabilization of the EMF response of type I electrodes is compared to type II electrodes which contain a Cu0/Cu2+ RedOx couple in the transducer layer. Type I sensors are suitable for measuring the salicylate ion concentration in the clinically important concentration range down to 2.5 × 10−4 M with a sensitivity to salicylate ion of −59.0 mV decade−1 in solutions with a high constant background of chloride ions of 0.12 M at pH = 5.3, making this a promising technique for an effective design of solid-contact ion-selective electrodes with polymeric sensing membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gao W-Y, Chrzanowski M, Ma S (2014) Metal-metalloporphyrin frameworks: a resurging class of functional materials. Chem Soc Rev 43(16):5841–5866

    Article  CAS  Google Scholar 

  2. Biesaga M, Pyrzyńska K, Trojanowicz M (2000) Porphyrins in analytical chemistry. A review Talanta 51(2):209–224

    Article  CAS  Google Scholar 

  3. Koposova E, Liu X, Pendin A, Thiele B, Shumilova G, Ermolenko Y, Offenhausser A, Mourzina Y (2016) Influence of Meso-substitution of the Porphyrin ring on enhanced hydrogen evolution in a photochemical system. J Phys Chem C 120(26):13873–13890

    Article  CAS  Google Scholar 

  4. Koposova E, Shumilova G, Ermolenko Y, Kisner A, Offenhausser A, Mourzina Y (2015) Direct electrochemistry of cyt c and hydrogen peroxide biosensing on oleylamine- and citrate-stabilized gold nanostructures. Sensors and Actuators B-Chemical 207:1045–1052

    Article  CAS  Google Scholar 

  5. Kimmel DW, LeBlanc G, Meschievitz ME, Cliffel DE (2012) Electrochemical sensors and biosensors. Anal Chem 84(2):685–707

    Article  CAS  Google Scholar 

  6. Zhang X-B, Guo C-C, Jian L-X, G-L SHEN, Yu R-Q (2000) Bismetalloporphyrin complexes as ionic carriers for a salicylate-sensitive electrode. Anal Sci 16(12):1285–1289

    Article  CAS  Google Scholar 

  7. Paolesse R, Nardis S, Monti D, Stefanelli M, Di Natale C (2017) Porphyrinoids for chemical sensor applications. Chem Rev 117(4):2517–2583

    Article  CAS  Google Scholar 

  8. Ermolenko Y, Yoshinobu T, Mourzina Y, Levichev S, Furuichi K, Vlasov Y, Schoning MJ, Iwasaki H (2002) Photocurable membranes for ion-selective light-addressable potentiometric sensor. Sensors and Actuators B-Chemical 85(1–2):79–85

    Article  CAS  Google Scholar 

  9. Santos EMG, Araújo AN, Couto CMCM, Montenegro MCBSM, Kejzlarová A, Solich P (2004) Ion selective electrodes for penicillin-G based on Mn(III)TPP-Cl and their application in pharmaceutical formulations control by sequential injection analysis. J Pharm Biomed Anal 36(4):701–709

    Article  CAS  Google Scholar 

  10. Bühlmann P, Pretsch E, Bakker E (1998) Carrier-based ion-selective electrodes and bulk Optodes. 2. Ionophores for potentiometric and optical sensors. Chem Rev 98(4):1593–1688

    Article  Google Scholar 

  11. Chen LD, Zou XU, Bühlmann P (2012) Cyanide-selective electrode based on Zn (II) Tetraphenylporphyrin as Ionophore. Anal Chem 84(21):9192–9198

    CAS  Google Scholar 

  12. Johnson RD, Bachas LG (2003) Ionophore-based ion-selective potentiometric and optical sensors. Anal Bioanal Chem 376(3):328–341

    Article  CAS  Google Scholar 

  13. Lvova L, Di Natale C, Paolesse R (2013) Porphyrin-based chemical sensors and multisensor arrays operating in the liquid phase. Sensors Actuators B Chem 179:21–31

    Article  CAS  Google Scholar 

  14. Shahrokhian S (2001) Lead Phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal Chem 73(24):5972–5978

    Article  CAS  Google Scholar 

  15. Shirmardi-Dezaki A, Shamsipur M, Akhond M, Sharghi H (2013) Cyanide selective electrodes based on a porphyrinatoiron (III) chloride derivative. J Electroanal Chem 689:63–68

    Article  CAS  Google Scholar 

  16. Vlascici DPI, Chiriac VA, Fagadar-Cosma G, Popovici H, Fagadar-Cosma E (2013) Chemistry Central Journal 7:1–7

    Article  Google Scholar 

  17. Farhadi K, Maleki R, Hosseinzadeh Yamchi R, Sharghi H, Shamsipur M (2004) [Tetrakis (4-N, N-dimethylaminobenzene) porphyrinato]-manganese (III) acetate as a novel carrier for a selective iodide PVC membrane electrode. Anal Sci 20(5):805–809

    Article  CAS  Google Scholar 

  18. Santos EMG, Araújo AN, Couto CMCM, Montenegro MCBSM (2006) Construction and evaluation of PVC and sol–gel sensor membranes based on Mn(III)TPP-Cl. Application to valproate determination in pharmaceutical preparations. Anal Bioanal Chem 384(4):867–875

    Article  CAS  Google Scholar 

  19. Starikova TA, Shumilova GI, Valiotti AB (2013) Electrochemical characteristics of membranes based on Mn(III) tetraphenylporphyrin. In English. Russ J Electrochem 49(9):856–862

    Article  CAS  Google Scholar 

  20. Trinder P (1954) Rapid determination of salicylate in biological fluids. Biochem J 57(2):301–303

    Article  CAS  Google Scholar 

  21. Zhu Y, Guan X, Ji H (2009) Electrochemical solid phase micro-extraction and determination of salicylic acid from blood samples by cyclic voltammetry and differential pulse voltammetry. J Solid State Electrochem 13(9):1417–1423

    Article  CAS  Google Scholar 

  22. Zhang W-D, Xu B, Hong Y-X, Yu Y-X, Ye J-S, Zhang J-Q (2010) Electrochemical oxidation of salicylic acid at well-aligned multiwalled carbon nanotube electrode and its detection. J Solid State Electrochem 14(9):1713–1718

    Article  CAS  Google Scholar 

  23. do Prado TM, SAS M (2016) Spectroelectrochemical study of salicylate in alkaline medium. J Solid State Electrochem 20(9):2569–2574

    Article  Google Scholar 

  24. Batista EA, Temperini MLA (2007) An in situ SERS and FTIRAS study of salicylate interaction with copper electrode. J Solid State Electrochem 11(11):1559–1565

    Article  CAS  Google Scholar 

  25. Shishkanova TV, Videnská K, Antonova SG, Kronďák M, Fitl P, Kopecký D, Vrňata M, Král V (2014) Application of polyaniline for potentiometric recognition of salicylate and its analogues. Electrochim Acta 115:553–558

    Article  CAS  Google Scholar 

  26. Shahrokhian S, Hamzehloei A, Bagherzadeh M (2002) Chromium (III) Porphyrin as a selective Ionophore in a salicylate-selective membrane electrode. Anal Chem 74(14):3312–3320

    Article  CAS  Google Scholar 

  27. Shahrokhian S, Amini MK, Kia R, Tangestaninejad S (2000) Salicylate-selective electrodes based on al (III) and Sn (IV) Salophens. Anal Chem 72(5):956–962

    Article  CAS  Google Scholar 

  28. Poursaberi T, Hassanisadi M (2012) Application of metalloporphyrin grafted-graphene oxide for the construction of a novel salicylate-selective electrode. J Porphyrins Phthalocyanines 16(10):1140–1147

    Article  CAS  Google Scholar 

  29. Messick MS, Krishnan SK, Hulvey MK, Steinle ED (2005) Development of anion selective polymer membrane electrodes based on lutetium (III) porphyrins. Anal Chim Acta 539(1–2):223–228

    Article  CAS  Google Scholar 

  30. Malinowska E, Niedziółka J, Roźniecka E, Meyerhoff ME (2001) Salicylate-selective membrane electrodes based on Sn (IV)- and O Mo (V)-porphyrins: differences in response mechanism and analytical performance. J Electroanal Chem 514(1–2):109–117

    Article  CAS  Google Scholar 

  31. Luo E-P, Chai Y-Q, Yuan R, Dai J-Y, Xu L (2009) Highly salicylate-selective membrane electrode based on a new thiomacrocyclic Schiff base complex of binuclear copper (II) as neutral carrier. Desalination 249(2):615–620

    Article  CAS  Google Scholar 

  32. Ganjali MR, Norouzi P, Faridbod F, Rezapour M, Ahmadi A (2007) Application of tetra cyclohexyl tin (IV) as an anionic carrier for the construction of a new salicylate membrane sensor. J Chin Chem Soc 54(4):969–976

    Article  CAS  Google Scholar 

  33. Yousry MI, Hosny I, Ola RS (2012) New copper (II)-selective chemically modified carbon paste electrode based on etioporphyrin I dihydrobromide. J Electroanal Chem 666:11–18

    Article  Google Scholar 

  34. Vamvakaki M, Chaniotakis NA (1996) Solid-contact ion-selective electrode with stable internal electrode. Anal Chim Acta 320(1):53–61

    Article  CAS  Google Scholar 

  35. Szűcs J, Lindfors T, Bobacka J, Gyurcsányi RE (2016) Ion-selective electrodes with 3D nanostructured conducting polymer solid contact. Electroanalysis 28(4):778–786

    Article  Google Scholar 

  36. Ruzicka J, Rald K (1971) The liquid-state, iodide-selective electrode. Anal Chim Acta 53(1):1–12

    Article  CAS  Google Scholar 

  37. Michalska A (2012) All-solid-state ion selective and all-solid-state reference electrodes. Electroanalysis 24(6):1253–1265

    Article  CAS  Google Scholar 

  38. Kakhki S, Shams E, Barsan MM (2013) Fabrication of carbon paste electrode containing a new inorganic–organic hybrid based on [SiW12O40]4− polyoxoanion and Nile blue and its electrocatalytic activity toward nitrite reduction. J Electroanal Chem 704:80–85

    Article  CAS  Google Scholar 

  39. Ivanova NM, Levin MB, Mikhelson KN (2012) Problems and prospects of solid contact ion-selective electrodes with ionophore-based membranes. Russ Chem Bull 61(5):926–936

    Article  CAS  Google Scholar 

  40. Hu J, Stein A, Bühlmann P (2016) Rational design of all-solid-state ion-selective electrodes and reference electrodes. Trends Anal Chem 76:102–114

    Article  CAS  Google Scholar 

  41. Brinić S, Buzuk M, Bralić M, Generalić E (2012) Solid-contact Cu (II) ion-selective electrode based on 1, 2-di-(o-salicylaldiminophenylthio)ethane. J Solid State Electrochem 16(4):1333–1341

    Article  Google Scholar 

  42. Fierke MA, Lai C-Z, Bühlmann P, Stein A (2010) Effects of architecture and surface chemistry of three-dimensionally ordered Macroporous carbon solid contacts on performance of ion-selective electrodes. Anal Chem 82(2):680–688

    Article  CAS  Google Scholar 

  43. Ivanova NM, Podeshvo IV, Goikhman MY, Yakimanskii AV, Mikhelson KN (2013) Potassium-selective solid contact electrodes with poly(amidoacid) Cu(I) complex, electron-ion exchanging resin and different sorts of carbon black in the transducer layer. Sensors Actuators B Chem 186:589–596

  44. Paczosa-Bator B (2012) All-solid-state selective electrodes using carbon black. Talanta 93:424–427

    Article  CAS  Google Scholar 

  45. Saravia LPH, Anandhakumar S, Parussulo ALA, Matias TA, Caldeira da Silva CC, Kowaltowski AJ, Araki K, Bertotti M (2016) Development of a tetraphenylporphyrin cobalt (II) modified glassy carbon electrode to monitor oxygen consumption in biological samples. J Electroanal Chem 775:72–76

    Article  CAS  Google Scholar 

  46. Jarvis JM, Guzinski M, Pendley BD, Lindner E (2016) Poly(3-octylthiophene) as solid contact for ion-selective electrodes: contradictions and possibilities. J Solid State Electrochem 20(11):3033–3041

    Article  CAS  Google Scholar 

  47. Mikhelson K (2013) Ion-selective Electrodes. In: Lecture notes in chemistry, vol 81. Springer, Heidelberg-New York-Dordrecht-London

  48. Bobacka J, Ivaska A, Lewenstam A (2008) Potentiometric ion sensors. Chem Rev 108(2):329–351

    Article  CAS  Google Scholar 

  49. Khripoun GA, Volkova EA, Liseenkov AV, Mikhelson KN (2006) Nitrate-selective solid contact electrodes with poly(3-octylthiophene) and poly(aniline) as ion-to-electron transducers buffered with electron-ion-exchanging resin. Electroanalysis 18(13–14):1322–1328

  50. Dean J (1974) Lange's Handbook of. chemistry. 15 edn.,

  51. Kulapin AI, Chernova RK, Kulapina EG (2005) Some regularities of interface formation in solid-contact potentiometric surfactant-selective sensors. In English. J Anal Chem 60(3):282–288

    Article  CAS  Google Scholar 

  52. Kulapin AI, Mikhailova AM, Kulapina EG (2003) Stabilizing potential of solid-contact sensors selective towards surface-active substances. In English. Russ J Electrochem 39(5):585–590

    Article  CAS  Google Scholar 

  53. Kulapin AI, Chernova RK, Kulapina EG (2002) New modified electrodes for the separate determination of polyoxyethylated nonylphenols. In English. J Anal Chem 57(7):638–643

    Article  CAS  Google Scholar 

  54. Rezaei B, Meghdadi S, Nafisi V (2007) Fast response and selective perchlorate polymeric membrane electrode based on bis (dibenzoylmethanato) nickel (II) complex as a neutral carrier. Sensors Actuators B Chem 121(2):600–605

    Article  CAS  Google Scholar 

  55. Valiotti AB, Vasil’eva OE, Starikova TA, Semeikin AS, Shumilova GI (2011) Electrochemical properties and spectrophotometry of membranes based on holmium tetraphenylporphyrinchloride. In English. Russ J Gen Chem 81(4):762

    Article  CAS  Google Scholar 

  56. Moreno-Castilla C (2004) Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42(1):83–94

    Article  CAS  Google Scholar 

  57. Wang J, Wang F, Yao J, Guo H, Blake RE, Choi MMF, Song C (2013) Effect of pH and temperature on adsorption of dimethyl phthalate on carbon nanotubes in aqueous phase. Anal Lett 46(2):379–393

    Article  Google Scholar 

  58. Starikova TASG, Pendin AA (2012) Russ J Gen Chem 82(11):1909–1914

    Google Scholar 

  59. Chaniotakis N, Chasser A, Meyerhoff M, Groves J (1988) Influence of porphyrin structure on anion selectivities of manganese (III) porphyrin based membrane electrodes. Anal Chem 60(2):185–188

    Article  CAS  Google Scholar 

  60. Malinski T (2000) Porphyrin-based electrochemical sensors. In: Kadish KM, Smith KM, Guilard M (eds) The porphyrin handbook, vol vol 6. Academic Press, USA, pp 232–256

    Google Scholar 

  61. Chou J-H, Kosal ME, Nalwa HS, Rakow NA, Suslick KS (2000) Applications of porphyrins and metalloporphyrins to materials chemistry. In: Kadish K, Smith KM, Guilard R (eds) The porphyrin handbook, vol vol 6. Academic Press, USA, pp 44–131

    Google Scholar 

  62. Zhai J, Xie X, Bakker E (2015) Ion-selective optode nanospheres as heterogeneous indicator reagents in complexometric titrations. Anal Chem 87(5):2827–2831

    Article  CAS  Google Scholar 

  63. Hill CL, Williamson MM (1985) Structural and electronic properties of six-coordinate manganese (III) porphyrin cations. Crystal and molecular structure of bis (N,N-dimethylformamide)(tetraphenylporphinato) manganese (III) perchlorate, [MnIIITPP(DMF)2]+ ClO4 -. Inorg Chem 24(18):2836–2841

  64. Boucher LJ (1972) Manganese porphyrin complexes. Coord Chem Rev 7(3):289–329

    Article  CAS  Google Scholar 

  65. Boucher LJ (1968) Manganese porphyrin complexes. I. Synthesis and spectroscopy of manganese (III) protoporphyrin IX dimethyl ester halides. J Am Chem Soc 90(24):6640–6645

    Article  CAS  Google Scholar 

  66. Great Medical Encyclopedia (1981), vol 15. M. Soviet Encyclopedia,

  67. Burns DT, Danzer K, Townshend A (2002) Use of the term "Recovery" and "Apparent Recovery" in analytical procedures (IUPAC recommendations 2002). Pure Appl Chem 74:2201–2205

    Article  CAS  Google Scholar 

  68. Koch-Weser J (1972) Serum drug concentrations as therapeutic guides. N Engl J Med 287:227–231

    Article  CAS  Google Scholar 

  69. Pau CP, Rechnitz GA (1984) Bound coefactor/dual enzyme electrode system for l-alanine. Anal Chim Acta 160:141–147

    Article  CAS  Google Scholar 

  70. Ganjali MR, Kiani-Anbouhi R, Pourjavid MR, Salavati-Niasari M (2003) Bis (trans-cinnamaldehyde) ethylene diimine dibromonickel (II) complex as a neutral carrier for salicylate-selective liquid membrane and coated graphite sensors. Talanta 61(3):277–284

    Article  CAS  Google Scholar 

  71. Chernyshov DV, Egorov VM, Shvedene NV, Pletnev IV (2009) Low-melting ionic solids: versatile materials for ion-sensing devices. ACS Appl Mater Interfaces 1(9):2055–2059

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Saint-Petersburg State University for a research grant 12.38.218.2015. The Resource Educational Center of the St. Petersburg State University in chemistry is acknowledged for the scanning electron microscopy investigations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tatiana A. Skripnikova or Yulia G. Mourzina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skripnikova, T.A., Starikova, A.A., Shumilova, G.I. et al. Towards stabilization of the potential response of Mn(III) tetraphenylporphyrin-based solid-state electrodes with selectivity for salicylate ions. J Solid State Electrochem 21, 2269–2279 (2017). https://doi.org/10.1007/s10008-017-3575-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3575-6

Keywords

Navigation