Skip to main content

Advertisement

Log in

Electrochemical formation of multilayered NiO film/Ni foam as a high-efficient anode for methanol electrolysis

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A multilayered NiO film is fabricated on 3D Ni foam (NF) substrate via electrochemical cyclic voltammetry (CV) as a high-efficient methanol oxidation catalyst. We carefully studied the formation mechanism of an as-fabricated electrode and found that lower cathode potential in CV plays a key role in constructing the microstructure of this material. The as-synthesized electrode shows remarkable electrocatalytic methanol oxidation activity (161.5 mA cm−2 in 1 M KOH with 0.3 M methanol) and good stability (current retention >92% after 500 cycles) in three-electrode measurement. Moreover, the NiO film/Ni foam is further used as anode catalyst in two-electrode configured methanol-water solution electrolysis. A sharp decline of cell voltage is observed (∼170 mV) when 0.1 M methanol was added in alkaline solution. In addition, the methanol-water solution electrolysis also exhibits lower electric energy consumption (∼41.87 KWh kg−1 Hydrogen@200 mA cm−2) for hydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang HJ, Yu H, Peng F, Lv P (2006) Methanol electrocatalytic oxidation on highly dispersed Pt/sulfonated-carbon nanotubes catalysts. Electrochem Commun 8(3):499–504

    Article  CAS  Google Scholar 

  2. Hwang J-J (2013) Sustainability study of hydrogen pathways for fuel cell vehicle applications. Renew Sust Energ Rev 19:220–229

    Article  CAS  Google Scholar 

  3. Mazloomi SK, Sulaiman N (2012) Influencing factors of water electrolysis electrical efficiency. Renew Sust Energ Rev 16(6):4257–4263

    Article  CAS  Google Scholar 

  4. Sasikumar G, Muthumeenal A, Pethaiah S, Nachiappan N, Balaji R (2008) Aqueous methanol eletrolysis using proton conducting membrane for hydrogen production. Int J Hydrog Energy 33(21):5905–5910

    Article  CAS  Google Scholar 

  5. Take T, Tsurutani K, Umeda M (2007) Hydrogen production by methanol–water solution electrolysis. J Power Sources 164(1):9–16

    Article  CAS  Google Scholar 

  6. Jin Z, Li P, Liu G, Zheng B, Yuan H, Xiao D (2013) Enhancing catalytic formaldehyde oxidation on CuO–Ag2O nanowires for gas sensing and hydrogen evolution. J Mater Chem A 1(46):14736

    Article  CAS  Google Scholar 

  7. Lamy C, Jaubert T, Baranton S, Coutanceau C (2014) Clean hydrogen generation through the electrocatalytic oxidation of ethanol in a proton exchange membrane electrolysis cell (PEMEC): effect of the nature and structure of the catalytic anode. J Power Sources 245:927–936

    Article  CAS  Google Scholar 

  8. Marshall AT, Haverkamp RG (2008) Production of hydrogen by the electrochemical reforming of glycerol–water solutions in a PEM electrolysis cell. Int J Hydrog Energy 33(17):4649–4654

    Article  CAS  Google Scholar 

  9. Lamy C, Devadas A, Simoes M, Coutanceau C (2012) Clean hydrogen generation through the electrocatalytic oxidation of formic acid in a proton exchange membrane electrolysis cell (PEMEC). Electrochim Acta 60:112–120

    Article  CAS  Google Scholar 

  10. Guo WL, Li L, Li LL, Tian S, Liu SL, Wu YP (2011) Hydrogen production via electrolysis of aqueous formic acid solutions. Int J Hydrog Energy 36(16):9415–9419

    Article  CAS  Google Scholar 

  11. Boggs BK, Botte GG (2009) On-board hydrogen storage and production: an application of ammonia electrolysis. J Power Sources 192(2):573–581

    Article  CAS  Google Scholar 

  12. Zhou L, Cheng Y (2008) Catalytic electrolysis of ammonia on platinum in alkaline solution for hydrogen generation. Int J Hydrog Energy 33(21):5897–5904

    Article  CAS  Google Scholar 

  13. Lamy C, Guenot B, Cretin M, Pourcelly G (2015) (Invited) a kinetics analysis of methanol oxidation under electrolysis/fuel cell working conditions. ECS Trans 66(29):1–12

    Article  CAS  Google Scholar 

  14. Uhm S, Jeon H, Kim TJ, Lee J (2012) Clean hydrogen production from methanol–water solutions via power-saved electrolytic reforming process. J Power Sources 198:218–222

    Article  CAS  Google Scholar 

  15. Liu ZL, Ling XY, Su XD, Lee JY (2004) Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J Phys Chem B 108(24):8234–8240

    Article  CAS  Google Scholar 

  16. Li Y, Gao W, Ci L, Wang C, Ajayan PM (2010) Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon 48(4):1124–1130

    Article  CAS  Google Scholar 

  17. Borkowska Z, Tymosiak-Zielinska A, Nowakowski R (2004) High catalytic activity of chemically activated gold electrodes towards electro-oxidation of methanol. Electrochim Acta 49(16):2613–2621

    Article  CAS  Google Scholar 

  18. Xiao M, Feng L, Zhu J, Liu C, Xing W (2015) Rapid synthesis of a PtRu nano-sponge with different surface compositions and performance evaluation for methanol electrooxidation. Nano 7(21):9467–9471

    CAS  Google Scholar 

  19. Cruz J, Baglio V, Siracusano S, Antonucci V, Aricò A, Ornelas R, Ortiz-Frade L, Osorio-Monreal G, Durón-Torres S, Arriaga L (2011) Preparation and characterization of RuO2 catalysts for oxygen evolution in a solid polymer electrolyte. Int J Electrochem Sci 6(12):660

    Google Scholar 

  20. Ensafi AA, Jafari-Asl M, Rezaei B, Abarghoui MM, Farrokhpour H (2015) Facile synthesis of Pt–Pd@silicon nanostructure as an advanced electrocatalyst for direct methanol fuel cells. J Power Sources 282:452–461

    Article  CAS  Google Scholar 

  21. Yajima T, Uchida H, Watanabe M (2004) In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt−Ru alloy. J Phys Chem B 108(8):2654–2659

    Article  CAS  Google Scholar 

  22. Fu X-Z, Liang Y, Chen S-P, Lin J-D, Liao D-W (2009) Pt-rich shell coated Ni nanoparticles as catalysts for methanol electro-oxidation in alkaline media. Catal Commun 10(14):1893–1897

    Article  CAS  Google Scholar 

  23. Luo Q, Peng M, Sun X, Asiri AM (2016) Hierarchical nickel oxide nanosheet@nanowire arrays on nickel foam: an efficient 3D electrode for methanol electro-oxidation. Catalysis Science & Technology, 2016 6(4):1157–1161

    Article  CAS  Google Scholar 

  24. Wang L, Zhang G, Liu Y, Li W, Lu W, Huang H (2016) Facile synthesis of a mechanically robust and highly porous NiO film with excellent electrocatalytic activity towards methanol oxidation. Nano 8(21):11256–11263

    CAS  Google Scholar 

  25. Jothi PR, Kannan S, Velayutham G (2015) Enhanced methanol electro-oxidation over in-situ carbon and graphene supported one dimensional NiMoO4 nanorods. J Power Sources 277:350–359

    Article  CAS  Google Scholar 

  26. Detsi E, Cook JB, Lesel BK, Turner CL, Liang Y-L, Robbennolt S, Tolbert SH (2016) Mesoporous Ni60Fe30Mn10-alloy based metal/metal oxide composite thick films as highly active and robust oxygen evolution catalysts. Energy Environ Sci 9(2):540–549

    Article  CAS  Google Scholar 

  27. Abdel Rahim MA, Abdel Hameed RM, Khalil MW (2004) Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium. J Power Sources 134(2):160–169

    Article  CAS  Google Scholar 

  28. Medway SL, Lucas CA, Kowal A, Nichols RJ, Johnson D (2006) In situ studies of the oxidation of nickel electrodes in alkaline solution. J Electroanal Chem 587(1):172–181

    Article  CAS  Google Scholar 

  29. Kadam LD, Patil PS (2001) Studies on electrochromic properties of nickel oxide thin films prepared by spray pyrolysis technique. Sol Energy Mater Sol Cells 69(4):361–369

    Article  CAS  Google Scholar 

  30. Qin X, Li X, Yang L, Wang Z, Zheng B, Yuan H, Xiao D (2014) Molten-salt synthesis of lamellar Ni(OH)2/NiOOH composite and its application for pseudocapacitor. J Alloys Compd 610:549–554

    Article  CAS  Google Scholar 

  31. Yuan YF, Xia XH, Wu JB, Yang JL, Chen YB, Guo SY (2011) Nickel foam-supported porous Ni(OH)2/NiOOH composite film as advanced pseudocapacitor material. Electrochim Acta 56(6):2627–2632

    Article  CAS  Google Scholar 

  32. El-Shafei AA (1999) Electrocatalytic oxidation of methanol at a nickel hydroxide/glassy carbon modified electrode in alkaline medium. J Electroanal Chem 471(2):89–95

    Article  CAS  Google Scholar 

  33. Grdeń M, Klimek K (2005) EQCM studies on oxidation of metallic nickel electrode in basic solutions. J Electroanal Chem 581(1):122–131

    Article  Google Scholar 

  34. Larramona G (1990) The nickel electrode: a potential-modulated reflectance study. J Electrochem Soc 137(2):428

    Article  CAS  Google Scholar 

  35. Melendres CA (1984) In situ laser Raman spectroscopic study of anodic corrosion films on nickel and cobalt. J Electrochem Soc 131(10):2239

    Article  CAS  Google Scholar 

  36. Skowroński JM, Ważny A (2005) Nickel foam-based composite electrodes for electrooxidation of methanol. J Solid State Electr 9(12):890–899

    Article  Google Scholar 

  37. Hadži-Jordanov S, Angerstein-Kozlowska H, Conway BE (1975) Surface oxidation and H deposition at ruthenium electrodes: resolution of component processes in potential-sweep experiments. J Electroanal Chem Interfacial Electrochem 60(3):359–362

    Article  Google Scholar 

  38. McIntyre NS, Cook MG (1975) X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal Chem 47(13):2208–2213

    Article  CAS  Google Scholar 

  39. Dalavi DS, Devan RS, Patil RS, Ma Y-R, Patil PS (2013) Electrochromic performance of sol–gel deposited NiO thin film. Mater Lett 90:60–63

    Article  CAS  Google Scholar 

  40. Nai J, Wang S, Bai Y, Guo L (2013) Amorphous Ni(OH)2 nanoboxes: fast fabrication and enhanced sensing for glucose. Small 9(18):3147–3152

    Article  CAS  Google Scholar 

  41. Hattori Y, Konishi T, Kaneko K (2002) XAFS and XPS studies on the enhancement of methane adsorption by NiO dispersed ACF with the relevance to structural change of NiO. Chem Phys Lett 355(1–2):37–42

    Article  CAS  Google Scholar 

  42. Yuan C, Zhang X, Su L, Gao B, Shen L (2009) Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J Mater Chem 19(32):5772

    Article  CAS  Google Scholar 

  43. Liu S-J (2004) Kinetics of methanol oxidation on poly(NiII-tetramethyldibenzotetraaza[14] annulene)-modified electrodes. Electrochim Acta 49(19):3235–3241

    Article  CAS  Google Scholar 

  44. Asgari M, Maragheh MG, Davarkhah R, Lohrasbi E (2011) Methanol electrooxidation on the nickel oxide nanoparticles/multi-walled carbon nanotubes modified glassy carbon electrode prepared using pulsed electrodeposition. J Electrochem Soc 158(12):K225

    Article  CAS  Google Scholar 

  45. Iwasita T (2002) Electrocatalysis of methanol oxidation. Electrochim Acta 47(22–23):3663–3674

    Article  CAS  Google Scholar 

  46. Gu L, Qian L, Lei Y, Wang Y, Li J, Yuan H, Xiao D (2014) Microwave-assisted synthesis of nanosphere-like NiCo2O4 consisting of porous nanosheets and its application in electro-catalytic oxidation of methanol. J Power Sources 261:317–323

    Article  CAS  Google Scholar 

  47. Kim T, Ahn K, Vohs JM, Gorte RJ (2007) Deactivation of ceria-based SOFC anodes in methanol. J Power Sources 164(1):42–48

    Article  CAS  Google Scholar 

  48. Yu M, Chen J, Liu J, Li S, Ma Y, Zhang J, An J (2015) Mesoporous NiCo2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation. Electrochim Acta 151:99–108

    Article  CAS  Google Scholar 

  49. Ji J, Zhang LL, Ji H, Li Y, Zhao X, Bai X, Fan X, Zhang F, Ruoff RS (2013) Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7(7):6237–6243

    Article  CAS  Google Scholar 

  50. Wang ZB, Yin GP, Zhang J, Sun YC, Shi PF (2006) Co-catalytic effect of Ni in the methanol electro-oxidation on Pt–Ru/C catalyst for direct methanol fuel cell. Electrochim Acta 51(26):5691–5697

    Article  CAS  Google Scholar 

  51. Tuomi S, Santasalo-Aarnio A, Kanninen P, Kallio T (2013) Hydrogen production by methanol–water solution electrolysis with an alkaline membrane cell. J Power Sources 229:32–35

    Article  CAS  Google Scholar 

  52. Chen YX, Lavacchi A, Miller HA, Bevilacqua M, Filippi J, Innocenti M, Marchionni A, Oberhauser W, Wang L, Vizza F (2014) Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis. Nat Commun 5:4036

    CAS  Google Scholar 

  53. Li P, Jin Z, Yang J, Jin Y, Xiao D (2016) Highly active 3D-nanoarray-supported oxygen-evolving electrode generated from cobalt-phytate nanoplates. Chem Mater 28(1):153–161

    Article  Google Scholar 

  54. Jin Z, Li P, Xiao D (2016) Metallic Co2P ultrathin nanowires distinguished from CoP as robust electrocatalysts for overall water-splitting. Green Chem 18(6):1459–1464

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China. (No.21275104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Xiao.

Electronic supplementary material

ESM 1

(PDF 779 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Zhang, X., Gao, T. et al. Electrochemical formation of multilayered NiO film/Ni foam as a high-efficient anode for methanol electrolysis. J Solid State Electrochem 21, 2301–2311 (2017). https://doi.org/10.1007/s10008-017-3570-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3570-y

Keywords

Navigation