Skip to main content
Log in

Comparative study of the electrochemical properties of LiNi0.5Mn1.5O4 doped by bivalent ions (Cu2+, Mg2+, and Zn2+)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The 5V-positive electrode materials LiNi0.45M0.05Mn1.5O4 (M = Cu, Mg and Zn) are synthesized via a thermopolymerization method. Scanning electron microscopy and X-ray diffraction analyses indicate that these doped LiNi0.45M0.05Mn1.5O4 samples remain their spinel structure with an octahedral morphology. According to the results of infrared spectroscopy, Cu2+ and Mg2+ ions take partially the place of Ni2+ ions and occupy the 4b sites of the P4332 space group, while Zn2+ ions occupy the 8a sites of the Fd3m space group by displacing some Li+ ions originally at the 8a sites into the 16d sites. The LiNi0.45Cu0.05Mn1.5O4 and LiNi0.45Mg0.05Mn1.5O4 samples exhibit excellent rate performance with specific capacities of 98.3 and 92.4 mAh g−1, respectively, at the charge–discharge rate of 10 C, while the LiNi0.5Mn1.5O4 sample delivers only 78.9 mAh g−1 at 10 C. Besides, the LiNi0.45Cu0.05Mn1.5O4 and LiNi0.45Mg0.05Mn1.5O4 samples show good capacity retention at high temperature (55 °C) with the capacities of 117.6 and 119.5 mAh g−1, respectively, after 100 cycles at 1 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7):652–657

    Article  CAS  Google Scholar 

  2. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603

    Article  CAS  Google Scholar 

  3. Wu Q, Liu Y, Johnson CS (2014) Insight into the structural evolution of a high-voltage spinel for lithium-ion batteries. Chem Mater 26(16):4750–4756

    Article  CAS  Google Scholar 

  4. Lin M, Ben L, Sun Y (2015) Insight into the atomic structure of high-voltage spinel LiNi0.5Mn1.5O4 cathode material in the first cycle. Chem Mater 27(1):292–303

    Article  CAS  Google Scholar 

  5. Moorhead-Rosenberg Z, Huq A (2015) Electronic and electrochemical properties of Li1-xMn1.5Ni0.5O4 spinel cathodes as a function of lithium content and cation ordering. Chem Mater 27(20):6934–6945

    Article  CAS  Google Scholar 

  6. Ma J, Hu P, Cui GL, Chen LQ (2016) Surface and interface issues in spinel LiNi0.5Mn1.5O4 : Insights into a potential cathode material for high energy density lithium ion batteries. Chem Mater 28:3578–3606

    Article  CAS  Google Scholar 

  7. Yan HW, Huang XJ, Chen LQ (1999) High power rechargeable batteries. Microwave synthesis of LiMn2O4 cathode material. J Power Sources 81–82:647–650

    Article  Google Scholar 

  8. Braun PV, Cho J, Pikul JH, King WP, Zhang H (2012) High power rechargeable batteries. Curr Opin Solid State Mater Sci 16(4):186–198

    Article  CAS  Google Scholar 

  9. Deng YF, Zhao SX, Xu YH, Gao K, Nan C-W (2015) Impact of P‑doped in spinel LiNi0.5Mn1.5O4 on degree of disorder, grain morphology, and electrochemical performance. Chem Mater 27(22):7734–7742

    Article  CAS  Google Scholar 

  10. Zhu YR, Yi TF, Zhu RS, Zhou AN (2013) Increased cycling stability of Li4Ti5O12 -coated LiMn1.5Ni0.5O4 as cathode material for lithium-ion batteries. Ceram Int 39(3):3087–3094

    Article  CAS  Google Scholar 

  11. Konishi H, Suzuki K, Taminato S, Kim K, Zheng Y, Kim S, Lim J, Hirayama M, Son J-Y, Cui Y, Kanno R (2014) Effect of surface Li3PO4 coating on LiNi0.5Mn1.5O4 epitaxial thin film electrodes synthesized by pulsed laser deposition. J Power Sources 269:293–298

    Article  CAS  Google Scholar 

  12. Arrebola JC, Caballero A, Hernán L, Morales J (2010) Re-examining the effect of ZnO on nanosized 5 V LiNi0.5Mn1.5O4 spinel: an effective procedure for enhancing its rate capability at room and high temperatures. J Power Sources 195(13):4278–4284

    Article  CAS  Google Scholar 

  13. Huang B, Li X, Wang Z, Guo H, Xiong X, Wang J (2014) A novel carbamide-assistant hydrothermal process for coating Al2O3 onto LiMn1.5Ni0.5O4 particles used for cathode material of lithium-ion batteries. J Alloys Comp 583:313–319

    Article  CAS  Google Scholar 

  14. Niketic S, Couillard M, MacNeil D, Abu-Lebdeh Y (2014) Improving the performance of high voltage LiMn1.5Ni0.5O4 cathode material by carbon coating. J Power Sources 271:285–290

    Article  CAS  Google Scholar 

  15. Wang H, Shi Z, Li J, Yang S, Ren R, Cui J, Xiao J, Zhang B (2015) Direct carbon coating at high temperature on LiNi0.5Mn1.5O4 cathode: unexpected influence on crystal structure and electrochemical performances. J Power Sources 288:206–213

    Article  CAS  Google Scholar 

  16. Fang X, Shen C, Ge M, Rong J, Liu Y, Zhang A, Wei F, Zhou C (2015) High-power lithium ion batteries based on flexible and light-weight cathode of LiNi0.5Mn1.5O4 /carbon nanotube film. Nano Energ 12:43–51

    Article  CAS  Google Scholar 

  17. Chai JC, Zhang JJ, Pu Hu P, Ma J (2016) A high-voltage poly(methylethyl α-cyanoacrylate) composite polymer electrolyte for 5 V lithium batteries. J Mater Chem A 4:5191–5197

    Article  CAS  Google Scholar 

  18. Zhang JH, Zhang JJ, Pu Hu P, Ma J (2016) A sustainable and rigid-flexible coupling cellulose-supported poly (propylene carbonate) polymer electrolyte towards 5 V high voltage lithium batteries. Electrochim Acta 188:23–30

    Article  Google Scholar 

  19. Zhong GB, Wang YY, Zhang ZC, Chen CH (2011) Effects of Al substitution for Ni and Mn on the electrochemical properties of LiNi0.5Mn1.5O4. Electrochim Acta 56(18):6554–6561

    Article  CAS  Google Scholar 

  20. Zhong GB, Wang YY, Yu YQ, Chen CH (2012) Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M = Fe, Co, Cr) 5 V cathode materials for lithium ion batteries. J Power Sources 205:385–393

    Article  CAS  Google Scholar 

  21. Sha O, Qiao Z, Wang S, Tang Z, Wang H, Zhang X, Xu Q (2013) Improvement of cycle stability at elevated temperature and high rate for LiNi0.5–x Cux Mn1.5 O4 cathode material after Cu substitution. Mater Res Bull 48(4):1606–1611

    Article  CAS  Google Scholar 

  22. Chemelewski KR, Manthiram A (2013) Origin of site disorder and oxygen nonstoichiometry in LiMn1.5Ni0.5–xMxO4 (M = Cu and Zn) cathodes with divalent dopant ions. J Phys Chem C 117(24):12465–12471

    Article  CAS  Google Scholar 

  23. Zhu W, Liu D, Trottier J, Gagnon C, Guerfi A, Julien CM, Mauger A, Zaghib K (2014) Comparative studies of the phase evolution in M-doped LixMn1.5Ni0.5O4 (M = Co, Al, Cu and Mg) by in-situ x-ray diffraction. J Power Sources 264:290–298

    Article  CAS  Google Scholar 

  24. Liu MH, Huang HT, Lin CM, Chen JM, Liao SC (2014) Mg gradient-doped LiNi0.5Mn1.5O4 as the cathode material for Li-ion batteries. Electrochim Acta 120:133–139

    Article  CAS  Google Scholar 

  25. Locati C, Lafont U, Simonin L, Ooms F, Kelder EM (2007) Mg-doped LiNi0.5Mn1.5O4 spinel for cathode materials. J Power Sources 174(2):847–851

    Article  CAS  Google Scholar 

  26. Shiu JJ, Pang WK, Wu S-h (2013) Preparation and characterization of spinel LiNi0.5–x MgxMn1.5O4 cathode materials via spray pyrolysis method. J Power Sources 244:35–42

    Article  CAS  Google Scholar 

  27. Kim JH, Myung ST, Yoon CS (2004) Comparative study of LiNi0.5Mn1.5O and LiNi0.5Mn1.5O4cathodes having two crystallographic structures Fd3̄m and P4332. Chem Mater 16:906–914

    Article  CAS  Google Scholar 

  28. Idemoto Y, Narai H, Koura N (2003) Crystal structure and cathode performance dependence on oxygen content of LiMn1.5Ni0.5O4 as a cathode material for secondary lithium batteries. J Power Sources 119:125–129

    Article  Google Scholar 

  29. Kunduraci M, Al-Sharab JF, Amatucci GG (2006) High-power nanostructured LiMn2–xNixO4 high-voltage lithium-ion battery electrode materials electrochemical impact of electronic conductivity and morphology. Chem Mater 18:3585–3592

    Article  CAS  Google Scholar 

  30. Lee YJ, Park SH, Eng C (2002) Cation ordering and electrochemical properties of the cathode materials LiZnxMn2–xO4, 0 < x ≤ 0.5: A 6Li magic-angle spinning NMR spectroscopy and diffraction study. Chem Mater 14:194–205

    Article  CAS  Google Scholar 

  31. Wen W, Kumarasamy B, Mukerjee S, Auinat M, Ein-Eli Y (2005) Origin of 5 V electrochemical activity observed in non-redox reactive divalent cation doped LiM0.5–xMn1.5+xO4 (0 ≤ x ≤ 0.5). Cathode Materials. J Electrochem Soc 152(9):A1902

    Article  CAS  Google Scholar 

  32. Ein-Eli Y, Wen W, Mukerjee S (2005) Unexpected 5 V behavior of Zn-doped Mn spinel cathode material. Electrochem Solid-State Lett 8(3):A141

    Article  CAS  Google Scholar 

  33. Terada Y, Yasaka K, Nishikawa F, Konishi T, Yoshio M, Nakai I (2001) In situ XAFS analysis of Li(Mn, M)2O4 (M = Cr, Co, Ni) 5V cathode materials for lithium-ion secondary batteries. J Solid State Chem 156(2):286–291

    Article  CAS  Google Scholar 

  34. Ariyoshi K, Iwakoshi Y, Nakayama N, Ohzuku T (2004) Topotactic two-phase reactions of Li[Ni1/2Mn3/2]O4 (P4332) in nonaqueous lithium cells. J Electrochem Soc 151(2):A296

    Article  CAS  Google Scholar 

  35. Kim JH, Yoon CS, Myung ST, Prakash J, Sun YK (2004) Phase transitions in LiNi0.5Mn1.5O4 during cycling at 5 V. Electrochem Solid-State Lett 7(7):A216

    Article  CAS  Google Scholar 

  36. Alcantara R, Jaraba M, Lavela P (2004) Changes in the local structure of LiMgyNi0.5–yMn1.5O4 electrode materials during lithium extraction. Chem Mater 16:1573–1579

    Article  CAS  Google Scholar 

  37. Alcantara R, Jaraba M, Lavela P (2002) Optimizing preparation conditions for 5 V electrode performance, and structural changes in Li1–xNi0.5Mn1.5O4 spinel. Electrochim Acta 47:1829–1835

    Article  CAS  Google Scholar 

  38. Yang MC, Xu B, Cheng JH, Pan CJ, Hwang BJ, Meng YS (2011) Electronic,structural, and electrochemical properties of LiNixCuyMn2–x–yO4 (0 < x < 0.5, 0 < y < 0.5) high-voltage spinel materials. Chem Mater 23(11):2832–2841

    Article  CAS  Google Scholar 

  39. Vaughey JT, Thackeray MM (1998) LiMn2–xCuxO4 Spinels (0.1 ≤ x ≤ 0.5): a new class of 5 V cathode materials for Li bateries. J Electrochem Soc 145:1238–1244

    Article  Google Scholar 

  40. Ein-Eli Y, Vaughey JT, Thackeray MM (1999) LiNixCu0.5–xMn1.5O4 spinel electrodes, superior highpotential cathode materials for Li batteries I. electrochemical and structural studies. J Electrochem Soc 146(3):908–913

    Article  CAS  Google Scholar 

  41. Kunduraci M, Amatucci GG (2006) Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. J Electrochem Soc 153(7):A1345

    Article  CAS  Google Scholar 

  42. Chen D, Li B, Liao Y, Lan H, Lin H, Xing L, Wang Y, Li W (2014) Improved electrochemical performance of LiNi0.5Mn1.5O4 as cathode of lithium ion battery by Co and Cr co-doping. J Solid State Electrochem 18(7):2027–2033

    Article  CAS  Google Scholar 

  43. Xiao J, Chen X, Sushko PV, Sushko ML, Kovarik L (2012) High performance LiNi0.5Mn1.5O4 spinel controlled by Mn concentration and site disorder. Adv Mater 24(16):2109–2116

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Foundation of China (grant no. 51577175), NSAF (grant no. U1630106), Hefei Center of Materials Science and Technology (2014FXZY006), and the Education Ministry of Anhui Province (KJ2014ZD36). We are also grateful to Elementec Ltd. in Suzhou.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Hua Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, MM., Zou, BK., Shao, Y. et al. Comparative study of the electrochemical properties of LiNi0.5Mn1.5O4 doped by bivalent ions (Cu2+, Mg2+, and Zn2+). J Solid State Electrochem 21, 1733–1742 (2017). https://doi.org/10.1007/s10008-017-3545-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3545-z

Keywords

Navigation