Skip to main content
Log in

Electrochemical nucleation and growth of three-dimensional clusters: the case of multi-step ions discharge–I

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical nucleation and growth of three-dimensional spherical clusters on a foreign substrate are considered in case of multi- and single-step ions discharge reaction. Theoretical expressions are derived for the stationary nucleation rate and for the current-time and the radius-time relationships of single clusters growing at a constant electrochemical supersaturation. The error that would be made if the important physical quantities critical nucleus size and exchange current density are determined not using correct theoretical formulas accounting for the actual multi- or single-step reaction mechanism is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In this paper, the cathodic overpotential η = E  − E is considered as a positive quantity.

  2. Note that Eq. (13) does not take into account the line tension effects at the clusters periphery which become significant at sufficiently low values of R. Readers who are interested in this subject can find additional information in refs. [34, 35] as well as in the references cited therein.

  3. Note that the numerical evaluations that follow are performed for α = 0.5 and i 0 = 7 × 10−3 Acm−2 both in case of multi-step and in case of single-step electrochemical reactions, so that Figs. 2 and 3 illustrate only qualitatively the shape of the R(t) and the I(t) relationships.

  4. Remember that the absolute error is defined as the modulus of the difference between the measured and the real value of a given quantity, whereas, the relative error is given by the ratio of the absolute error and the measured value of the same quantity.

References

  1. Bockris JO’M, Reddy AKN (1970) Modern electrochemistry, vol 2. Plenum Press, New York

    Book  Google Scholar 

  2. Damaskin BB, Petrii OA (1975) Introduction to the electrochemical kinetics (in Russian). Visshaya Shkola, Moscow

    Google Scholar 

  3. Damaskin BB, Petrii OA, Tsirlina GA (2006) Electrochemistry (in Russian). Khimiya, Koloss, Moscow

    Google Scholar 

  4. Milchev A (2008) J Electroanal Chem 612:42

    Article  CAS  Google Scholar 

  5. Fletcher S (2009) J Solid State Electrochem 13:537

    Article  CAS  Google Scholar 

  6. Fletcher S (2010) J Solid State Electrochem 14:705

    Article  CAS  Google Scholar 

  7. Milchev A, Krastev I (2011) Electrochim Acta 56:2399

    Article  CAS  Google Scholar 

  8. Volmer M, Weber A (1926) Z Physik Chem 119:277

    CAS  Google Scholar 

  9. Farkas L (1927) Z Phys Chem 125:236

    Article  CAS  Google Scholar 

  10. Stranski IN, Kaischev R (1934) Z Physik Chem B 26:100

    Google Scholar 

  11. Kaischev R, Stranski IN (1934) Z Physik Chem B 26:114

    Google Scholar 

  12. Stranski IN, Kaischev R (1934) Z Physik Chem B 26:132

    Google Scholar 

  13. Becker R, Döring W (1935) Ann Phys 24:719

    Article  CAS  Google Scholar 

  14. Volmer M (1939) Kinetik der Phasenbildung, Steinkopf Verlag, Leipzig, Dresden (Russian translation: (1986) Nauka, Moscow)

  15. Zeldovich YaB (1942) Zh Eksp Theor Phys, 12:525 (in Russian); English translation: (1943) Acta Physicohim USSR, 18:1

  16. Frenkel YaI (1955) Kinetic Theory of Liquids, Dover, New York

  17. Markov I (1995) Crystal growth for beginners. World Scientific, Singapore

    Book  Google Scholar 

  18. Budevski E, Staikov G, Lorenz WJ (1996) Electrochemical phase formation—an introduction to the initial stages of metal deposition, VCH, Weinheim

  19. Gamburg JD (1997) Electrochemical crystallization of metals and alloys (in Russian), nus K, Moscow

  20. Kashchiev D (2000) Nucleation: basic theory with applications. Butterworth Heinemann, Oxford

    Google Scholar 

  21. Milchev A (2002) Electrocrystallization: fundamentals of nucleation and growth. Kluwer, Academic Publishers, Boston/Dordrecht/London

    Google Scholar 

  22. Isaev VA (2007) Electrochemical phase formation (in Russian). UrO RAN, Ekaterinburg

    Google Scholar 

  23. Stranski IN (1936) Ber Wien Acad 145:840

    Google Scholar 

  24. Stranski IN (1936) Ann Univ Sofia 30:367

    Google Scholar 

  25. Kaischev R (1951) Commun Bulg Acad Sci (Phys) 2:191

    Google Scholar 

  26. Milchev A, Stoyanov S, Kaischev R (1974) Thin Solid Films 22:255

    Article  CAS  Google Scholar 

  27. Milchev A, Stoyanov S, Kaischev R (1974) Thin Solid Films 22:267

    Article  CAS  Google Scholar 

  28. Milchev A, Stoyanov S (1976) J Electroanal Chem 72:33

    Article  CAS  Google Scholar 

  29. Milchev A (1991) Contemp Phys 32:321

    Article  CAS  Google Scholar 

  30. Staikov G, Milchev A (2007) Electrocrystallization in nanotechnology. WILEY-VCH Verlag Gmbh & Co, KGaA

  31. Milchev A (2016) ChemTexts 2:2

    Article  Google Scholar 

  32. Milchev A (2016) ChemTexts 2:4

    Article  Google Scholar 

  33. Milchev A (2016) Nanoscale, in print

  34. Milchev AI, Milchev AA (2001) Europhys Lett 56:695

    Article  CAS  Google Scholar 

  35. Milchev AI, Milchev AA, Binder K (2002) Computer Phys Commun 146:38

    Article  CAS  Google Scholar 

  36. Milchev A, Michailova E, Lacmann R, Müller-Zülow (1993) Electrochim Acta 38(4):535

    Article  CAS  Google Scholar 

  37. Zapryanova T, Jordanov N, Milchev A (2008) J Electroanal Chem 612:47

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Mladenova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mladenova, E., Milchev, A. Electrochemical nucleation and growth of three-dimensional clusters: the case of multi-step ions discharge–I. J Solid State Electrochem 21, 1599–1604 (2017). https://doi.org/10.1007/s10008-017-3511-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3511-9

Keywords

Navigation