Skip to main content
Log in

Modeling and simulation of 3D electrochemical phase formation under mixed kinetic-diffusion growth control

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The model has been developed for the case of instantaneous nucleation and mixed kinetic-diffusion growth control of new-phase nuclei on the surface of an indifferent electrode under potentiostatic conditions. A new approach has been proposed that does not use the planar diffusion zone concept. The model provides a correct relationship between the concentration profiles to the nucleus and to the electrode due to spherical and planar diffusion, respectively. The influence of charge transfer and mass transfer parameters and the overpotential on the calculated current density transients and the average size of the nuclei has been analyzed. The simulated current density transients have been compared with the results of the calculation according to the Altimari–Pagnanelli and Scharifker–Hills models. The simulation results show that the mutual position of the current density transients under mixed control differs from that under diffusion control. It has been confirmed that the use of the dimensionless dependences of the Scharifker–Hills model at non-pure diffusion growth control can lead to serious errors in determining the mechanisms and electrocrystallization parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Milchev A (2020) Electrochemical formation and growth of a new phase: What to do next? J Solid State Electrochem 24:2143–2144. https://doi.org/10.1007/s10008-020-04736-6

    Article  CAS  Google Scholar 

  2. Milchev A (2002) lectrocrystallization: Fundamentals of nucleation and growth. Kluwer Academic Publishers, Boston. ISBN:1-4020-7090-X

  3. Gamburg YD (1997) Electrochemical crystallization of metals and alloys. Yanus K, Moscow. ISBN: 5-88929-035-5

  4. Budevski E, Staikov G, Lorenz WJ (1996) Electrochemical phase formation and growth: An introduction to the initial stages of metal deposition. VCH, New York. ISBN: 9783527294220

  5. Tsakova V (2020) Theory of electrochemical nucleation and growth – revisited? J Solid State Electrochem 24:2183–2185. https://doi.org/10.1007/s10008-020-04676-1

    Article  CAS  Google Scholar 

  6. Ustarroz J, Ke X, Hubin A, Bals S, Terryn H (2012) New insights into the early stages of nanoparticle electrodeposition. J Phys Chem C 116:2322–2329. https://doi.org/10.1021/jp210276z

    Article  CAS  Google Scholar 

  7. Lemineur JF, Noël JM, Combellas C, Kanoufi F (2020) Optical monitoring of the electrochemical nucleation and growth of silver nanoparticles on electrode: From single to ensemble nanoparticles inspection. J Electroanal Chem 872:114043. https://doi.org/10.1016/j.jelechem.2020.114043

  8. Scharifker BR, Hills GJ (1983) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28:879–889. https://doi.org/10.1016/0013-4686(83)85163-9

    Article  CAS  Google Scholar 

  9. Scharifker BR, Mostany J (1984) Three-dimensional nucleation with diffusion controlled growth. Part I. Number density of active sites and nucleation rates per site. J Electroanal Chem 177:13–23. https://doi.org/10.1016/0022-0728(84)80207-7

    Article  CAS  Google Scholar 

  10. Sluyters-Rehbach M, Wijenberg JHOJ, Bosco E, Sluyters JH (1987) The theory of chronoamperometry for the investigation of electrocrystallization. Mathematical description and analysis in the case of diffusion-controlled growth. J Electroanal Chem 236:1–20. https://doi.org/10.1016/0022-0728(87)88014-2

  11. Fletcher S (1983) Electrochemical deposition of hemispherical nuclei under diffusion control. Some theoretical considerations. J Chem Soc Faraday Trans 1 79:467–479. https://doi.org/10.1039/F19837900467

  12. Milchev A (1990) Ohmic drop and zones of reduced overpotential during the growth of small clusters. J Appl Electrochem 20:307–318. https://doi.org/10.1007/BF01033610

    Article  CAS  Google Scholar 

  13. Milchev A, Tsakova V (1990) Theory of progressive nucleation and growth accounting for the ohmic drop in the electrolyte. I. J Appl Electrochem 20:301–306. https://doi.org/10.1007/BF01033609

    Article  CAS  Google Scholar 

  14. Abyaneh MY (1982) Calculation of overlap for nucleation and three-dimensional growth of centres. Electrochim Acta 27:1329–1334. https://doi.org/10.1016/0013-4686(82)80156-4

    Article  CAS  Google Scholar 

  15. Isaev VA, Grishenkova OV, Zaykov YP (2018) On the theory of 3D multiple nucleation with kinetic controlled growth. J Electroanal Chem 818:265–269. https://doi.org/10.1016/j.jelechem.2018.04.051

    Article  CAS  Google Scholar 

  16. Isaev VA, Grishenkova OV, Zaykov YP, Kosov AV, Semerikova OL (2019) Analysis of potentiostatic current transients for multiple nucleation with diffusion and kinetic controlled growth. J Electrochem Soc 166:D851–D856. https://doi.org/10.1149/2.1061915jes

    Article  CAS  Google Scholar 

  17. Milchev A, Montenegro MI (1992) A galvanostatic study of electrochemical nucleation. J Electroanal Chem 333:93–102. https://doi.org/10.1016/0022-0728(92)80383-F

    Article  CAS  Google Scholar 

  18. Hasse U, Fletcher S, Scholz F (2006) Nucleation-growth kinetics of the oxidation of silver nanocrystals to silver halide crystals. J Solid State Electrochem 10:833–840. https://doi.org/10.1007/s10008-006-0170-7

    Article  CAS  Google Scholar 

  19. Isaev VA, Grishenkova OV, Semerikova OL (2013) Three-dimensional nucleation and growth under galvanostatic conditions. J Solid State Electrochem 17:361–363. https://doi.org/10.1007/s10008-012-1911-4

    Article  CAS  Google Scholar 

  20. Isaev VA, Grishenkova OV (2013) Galvanostatic nucleation and growth under diffusion control. J Solid State Electrochem 17:1505–1508. https://doi.org/10.1007/s10008-013-2119-y

    Article  CAS  Google Scholar 

  21. Isaev VA, Grishenkova OV (2014) Galvanostatic phase formation. J Solid State Electrochem 18:2383–2386. https://doi.org/10.1007/s10008-014-2489-9

    Article  CAS  Google Scholar 

  22. Isaev VA, Grishenkova OV, Kosov AV, Semerikova OL, Zaykov YP (2017) Simulation of the potentiodynamic and galvanostatic phase formation in the melts. Russ Metall (Met) 2017:146–151. https://doi.org/10.1134/S0036029517020057

    Article  Google Scholar 

  23. Fletcher S, Halliday CS, Gates D, Westcott M, Lwin T, Nelson G (1983) The response of some nucleation/growth processes to triangular scans of potential. J Electroanal Chem 159:267–285. https://doi.org/10.1016/S0022-0728(83)80627-5

    Article  CAS  Google Scholar 

  24. Isaev VA, Grishenkova OV, Kosov AV, Semerikova OL, Zaykov YP (2017) On the theory of cyclic voltammetry for formation and growth of single metal cluster. J Solid State Electrochem 21:787–791. https://doi.org/10.1007/s10008-016-3425-y

    Article  CAS  Google Scholar 

  25. Kosov AV, Grishenkova OV, Semerikova OL, Isaev VA, Zaikov YP (2021) On the theory of cyclic voltammetry for multiple nucleation and growth: Scan rate influence. J Electroanal Chem 883:115056. https://doi.org/10.1016/j.jelechem.2021.115056

  26. Isaev VA, Grishenkova OV, Zaykov YP (2016) Analysis of the geometrical–probabilistic models of electrocrystallization. Russ Metall (Met) 2016:776–784. https://doi.org/10.1134/S0036029516080061

    Article  Google Scholar 

  27. Sun Yu, Zangari G (2023) Commentary and notes on the original derivations of the Scharifker-Hills model. J Electrochem Soc 170:032503. https://doi.org/10.1149/1945-7111/acb618

  28. Kosov AV, Grishenkova OV, Isaev VA, Zaikov Y (2022) Simulation of diffusion-controlled growth of interdependent nuclei under potentiostatic conditions. Materials 15:3603. https://doi.org/10.3390/ma15103603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sebastián P, Botello LE, Vallés E, Gómez E, Palomar-Pardavé M, Scharifker BR, Mostany J (2017) Three-dimensional nucleation with diffusion controlled growth: A comparative study of electrochemical phase formation from aqueous and deep eutectic solvents. J Electroanal Chem 793:119–125. https://doi.org/10.1016/j.jelechem.2016.12.014

    Article  CAS  Google Scholar 

  30. Zapryanova T, Danilov A, Milchev A (2010) Growth kinetics of single copper crystals: The concentration dependence. Russ J Electrochem 46:607–610. https://doi.org/10.1134/S1023193510060029

    Article  CAS  Google Scholar 

  31. Milchev A, Zapryanova T (2006) Nucleation and growth of copper under combined charge transfer and diffusion limitations: Part I. Electrochim Acta 51:2926–2933. https://doi.org/10.1016/j.electacta.2005.08.045

    Article  CAS  Google Scholar 

  32. Milchev A, Zapryanova T (2006) Nucleation and growth of copper under combined charge transfer and diffusion limitations: Part II. Electrochim Acta 51:4916–4921. https://doi.org/10.1016/j.electacta.2006.01.030

    Article  CAS  Google Scholar 

  33. Milchev A (2008) Nucleation and growth of clusters through multi-step electrochemical reactions. J Electroanal Chem 612:42–46. https://doi.org/10.1016/j.jelechem.2007.09.010

    Article  CAS  Google Scholar 

  34. Cao Y, West AC (2002) Nucleation and three-dimensional growth: Deviation from diffusion control. J Electrochem Soc 149:C223–C228. https://doi.org/10.1149/1.1461379

    Article  CAS  Google Scholar 

  35. Fletcher S (1983) Some formulae describing spherical and hemispherical diffusion to small crystals in unstirred solutions. J Cryst Growth 62:505–512. https://doi.org/10.1016/0022-0248(83)90393-7

    Article  CAS  Google Scholar 

  36. Mirkin MV, Nilov AP (1990) Three-dimensional nucleation and growth under controlled potential. J Electroanal Chem 28:335–351. https://doi.org/10.1016/0022-0728(90)87377-V

    Article  Google Scholar 

  37. Abyaneh MY, Fleischmann M, Mehrabi MH (2019) Modelling the growth of a single centre. J Electroanal Chem 834:114–123. https://doi.org/10.1016/j.jelechem.2018.11.030

    Article  CAS  Google Scholar 

  38. Isaev VA, Grishenkova OV, Kosov AV, Semerikova OL, Zaikov Y (2021) Simulation of 3D electrochemical phase formation: mixed growth control. Materials 14:6330. https://doi.org/10.3390/ma14216330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Isaev VA, Grishenkova OV, Zaykov Yu (2020) Theoretical modeling of electrochemical nucleation and growth of a single metal nanocluster on a nanoelectrode. RSC Adv 10:6979–6984. https://doi.org/10.1039/d0ra00608d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mamme MH, Deconinck J, Ustarroz J (2017) Transition between kinetic and diffusion control during the initial stages of electrochemical growth using numerical modelling. Electrochim Acta 258:662–668. https://doi.org/10.1016/j.electacta.2017.11.111

    Article  CAS  Google Scholar 

  41. Mamme MH, Cherigui EAM, Dolgikh O, Ustarroz J, Simillion H, Terryn H, Deconinck J (2016) A finite element simulation of the electrochemical growth of a single hemispherical silver nucleus. Electrochim Acta 197:307–317. https://doi.org/10.1016/j.electacta.2015.12.035

    Article  CAS  Google Scholar 

  42. Altimari P, Pagnanelli F (2016) Electrochemical nucleation and three-dimensional growth under mixed kinetic-diffusion control: Analytical approximation of the current transient. Electrochim Acta 205:113–117. https://doi.org/10.1016/j.electacta.2016.04.093

    Article  CAS  Google Scholar 

  43. Altimari P, Pagnanelli F (2016) Electrochemical nucleation and three-dimensional growth of metal nanoparticles under mixed kinetic-diffusion control: Model development and validation. Electrochim Acta 206:116–126. https://doi.org/10.1016/j.electacta.2016.04.094

    Article  CAS  Google Scholar 

  44. Bard AJ, Faulkner LR (2001) Electrochemical methods: Fundamentals and applications, 2nd edn. John Wiley & Sons, New York, NY, pp 191–201. ISBN: 978-0-471-04372-0

  45. Milchev A, Heerman L (2003) Electrochemical nucleation and growth of nano-and microparticles: Some theoretical and experimental aspects. Electrochim Acta 48:2903–2913. https://doi.org/10.1016/S0013-4686(03)00355-4

    Article  CAS  Google Scholar 

  46. Kolmogorov AN (1937) On the statistical theory of metal crystallization (in Russian). Izv Akad Nauk SSSR Ser Mat 3:355–359

    Google Scholar 

  47. Johnson WA, Mehl RF (1939) Reaction kinetics in processes of reaction and growth. Trans Am Inst Min Metall Eng 135:416–442

    Google Scholar 

  48. Avrami M (1939) Kinetics of phase change. I general theory. J Chem Phys 7:1103–1112. https://doi.org/10.1063/1.1750380

    Article  CAS  Google Scholar 

  49. Isaev VA, Grishenkova OV (2001) Kinetics of electrochemical nucleation and growth. Electrochem Comm 3:500–504. https://doi.org/10.1016/S1388-2481(01)00207-7

    Article  CAS  Google Scholar 

  50. Smith A, Fletcher S (1979) The fine structure of the Kolmogoroff-Avrami theorem. Can J Chem 57:1304–1318. https://doi.org/10.1139/v79-214

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga V. Grishenkova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is dedicated to the memory of Alexander Milchev and our mentor Vladimir Isaev, who made a great contribution to the development of the theory of electrochemical phase formation.

Appendix

Appendix

After substituting the result of differentiation of Eq. (13) at x = 0, as well as Eq. (18) at \(\xi\) = r with coefficients (19) into the boundary condition (8), we obtain

$${B}_{2}{a}_{2}+{B}_{1}{a}_{1}+{B}_{0}{c}_{\text{s}}=\mathrm{exp}(-\beta f\eta )\;,$$
(29)

where

$$\begin{array}{l}{B}_{2}=\frac{{S}_{\text{e}}\mathrm\;{exp}(\alpha f\eta )}{\pi {\text{c}}_{0}}\cdot \frac{3{r}^{2}{R}^{2}-{R}^{4}-3{r}^{4}}{3{R}^{2}\left({R}^{2}-2{r}^{2}\right)}\\ {B}_{1}=\frac{{S}_{\text{e}}\mathrm\;{exp}(\alpha f\eta )}{2\pi {\text{c}}_{0}}\cdot \left(\frac{3{r}^{2}{R}^{2}-{R}^{4}-3{r}^{4}}{3{R}^{2}\left({R}^{2}-2{r}^{2}\right)}+\frac{1}{R}-\frac{1}{r}\right)-\frac{{S}_{\text{e}}zeD}{s{i}_{0}}\\ {B}_{0}=\frac{{S}_{\text{e}}\mathrm\;{exp}(\alpha f\eta )}{\pi {\text{c}}_{0}{R}^{2}}\end{array}\;.$$
(30)

The Gibbs-Thomson effect was not considered in the calculations, since its contribution is negligibly small at t ≥ 10−5 s for the chosen parameter values.

To describe the concentration profile near the electrode using Eq. (13), we supplement Eq. (29) with two more equations for the following two points of the profile:

$${a}_{2}{x}_{1}^{2}+{a}_{1}{x}_{1}+{c}_{\text{s}}={c}_{1}\;,$$
(31)
$${a}_{2}{x}_{2}^{2}+{a}_{1}{x}_{2}+{c}_{\text{s}}={c}_{2}\;.$$
(32)

We now construct a matrix of coefficients for the system of Eqs. (29), (31), and (32), as well as its inverse matrix to determine the linear relationship between c1, c2, and cs,

$$\mathbf{G}=\left(\begin{array}{ccc}{x}_{1}^{2}& {x}_{1}& 1\\ {x}_{2}^{2}& {x}_{2}& 1\\ {B}_{2}& {B}_{1}& {B}_{0}\end{array}\right),\ \mathbf{G}^{-1}=\left(\begin{array}{ccc}{g}_{11}& {g}_{12}& {g}_{13}\\ {g}_{21}& {g}_{22}& {g}_{23}\\ {g}_{31}& {g}_{32}& {g}_{33}\end{array}\right)\;.$$
(33)

which is reflected in the formula

$${c}_{1}{g}_{31}+{c}_{2}{g}_{32}+\mathrm{exp}(\alpha f\eta ){g}_{33}={c}_{\text{s}}\;.$$
(34)

Complementing Eq. (34) with a system of equations for calculating the mass transfer by the backward Euler method,

$$-W_\text{Lj}c_\text{L}^\text{new}+W_\text{j}c^{\mathrm{new}}-W_\text{Rj}c_\text{R}^\text{new}=c^\text{old}\;,$$
(35)

where

$$\begin{array}{l}{W}_{\text{Lj}}=\frac{2D\Delta t}{\Delta {x}_{\text{j}}\left(\Delta {x}_{\text{j}}+\Delta {x}_{{\text{j}}+1}\right)}\\ {W}_{\text{j}}=1+\frac{2D\Delta t}{\Delta {x}_{\text{j}}\Delta {x}_{{\text{j}}+1}}\\ {W}_{\text{Rj}}=\frac{2D\Delta t}{\Delta {x}_{{\text{j}}+1}\left(\Delta {x}_{\text{j}}+\Delta {x}_{{\text{j}}+1}\right)}\end{array}\;,$$
(36)

we obtain the matrix M and the vector columns L and C:

$$\mathbf{M}=\left(\begin{array}{ccccccc}1& -{g}_{31}& -{g}_{32}& 0& 0& \cdots & 0\\ -{W}_{{\text{L}}1}& {W}_{1}& -{W}_{{\text{R}}1}& 0& 0& \cdots & 0\\ 0& -{W}_{{\text{L}}2}& {W}_{2}& -{W}_{{\text{R}}2}& 0& \cdots & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0& 0& 0& 0& 0& \cdots & 1\end{array}\right)\;,$$
(37)
$$\mathbf L=\begin{pmatrix}g_{33}\;\exp(-\beta f\eta)\\c_1^\text{old}\\c_2^\text{old}\\\vdots\\c_0\end{pmatrix}C=\begin{pmatrix}c_\text{s}^\text{new}\\c_1^\text{new}\\c_2^\text{new}\\\vdots\\c_0\end{pmatrix}\;,$$
(38)

where superscripts old and new refer to the previous (k − 1) and current (k) time step. Finally, the matrix equation M × C = L is solved by the Jordan-Gauss method to calculate the concentration profile at each next time step.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosov, A.V., Grishenkova, O.V. Modeling and simulation of 3D electrochemical phase formation under mixed kinetic-diffusion growth control. J Solid State Electrochem 28, 1535–1545 (2024). https://doi.org/10.1007/s10008-023-05603-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05603-w

Keywords

Navigation