Skip to main content
Log in

PMo11V@N-CNT electrochemical properties and its application as electrochemical sensor for determination of acetaminophen

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A polyoxometalate-nanocarbon composite, PMo11V@N-CNT, was prepared by a simple procedure which consisted of the immobilization of phosphovanadomolybdate (PMo11V) onto N-doped carbon nanotubes (N-CNT). The FTIR and XPS characterizations confirmed its successful synthesis. The cyclic voltammograms of glassy carbon electrode (GCE) modified with PMo11V and PMo11V@N-CNT showed four Mo-centred redox processes (MoVI/V) and a vanadium redox process (VV/IV). All were surface-confined redox processes. Additionally, PMo11V@N-CNT/GCE showed good stability and well-resolved redox peaks with high current intensities. The electrocatalytic sensing properties of PMo11V@N-CNT/GCE towards acetaminophen (AC) in the presence of tryptophan (TRP) were evaluated by square wave voltammetry. Under the conditions used, the peak current increased linearly with AC concentration in the presence of TRP, with a linear range from 1.5 × 10−6 to 3.9 × 10−4 mol dm−3 and a detection limit of 1.0 × 10−6 mol dm−3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Genovese M, Lian K (2015) Polyoxometalate modified inorganic-organic nanocomposite materials for energy storage applications: a review. Curr Opin Solid State Mat Sci 19(2):126–137

    Article  CAS  Google Scholar 

  2. Zen JM, Kumar AS, Tsai DM (2003) Recent updates of chemically modified electrodes in analytical chemistry. Electroanal 15(13):1073–1087

    Article  CAS  Google Scholar 

  3. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  4. Trogadas P, Fuller TF, Strasser P (2014) Carbon as catalyst and support for electrochemical energy conversion. Carbon 75:5–42

    Article  CAS  Google Scholar 

  5. Mao XW, Rutledge GC, Hatton TA (2014) Nanocarbon-based electrochemical systems for sensing, electrocatalysis, and energy storage. Nano Today 9(4):405–432

    Article  CAS  Google Scholar 

  6. Zhou M, Wang HL, Guo SJ (2016) Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem Soc Rev 45(5):1273–1307

    Article  CAS  Google Scholar 

  7. Danilov MO, Kolbasov GY (2010) Electrochemical method for the preparation nanocomposites based on carbon nanotubes and chromium oxides for oxygen electrodes. J Solid State Electrochem 14(12):2169–2172

    Article  CAS  Google Scholar 

  8. Gutierrez A, Gasnier A, Pedano ML, Gonzalez-Dominguez JM, Anson-Casaos A, Hernandez-Ferrer J, Galicia L, Rubianes MD, Martinez MT, Rivas GA (2015) Electrochemical sensor for the quantification of dopamine using glassy carbon electrodes modified with single-wall carbon nanotubes covalently functionalized with Polylysine. Electroanal 27(7):1565–1571

    Article  CAS  Google Scholar 

  9. Merkoci A, Pumera M, Llopis X, Perez B, del Valle M, Alegret S (2005) New materials for electrochemical sensing VI: carbon nanotubes. Trac-Trends Anal Chem 24(9):826–838

    Article  CAS  Google Scholar 

  10. Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385(3):452–468

    Article  CAS  Google Scholar 

  11. Akhgar MR, Salari M, Zamani H (2011) Simultaneous determination of levodopa, NADH, and tryptophan using carbon paste electrode modified with carbon nanotubes and ferrocenedicarboxylic acid. J Solid State Electrochem 15(4):845–853

    Article  CAS  Google Scholar 

  12. Kharian S, Teymoori N, Khalilzadeh MA (2012) Multi-wall carbon nanotubes and TiO2 as a sensor for electrocatalytic determination of epinephrine in the presence of p-chloranil as a mediator. J Solid State Electrochem 16(2):563–568

    Article  CAS  Google Scholar 

  13. Ghica ME, Wintersteller Y, Brett CMA (2013) Poly(brilliant green)/carbon nanotube-modified carbon film electrodes and application as sensors. J Solid State Electrochem 17(6):1571–1580

    Article  CAS  Google Scholar 

  14. Silva RM, Fernandes AJS, Ferro MC, Pinna N, Silva RF (2015) Vertically aligned N-doped CNTs growth using Taguchi experimental design. Appl Surf Sci 344:57–64

    Article  CAS  Google Scholar 

  15. He CY, Shen PK (2013) Synthesis of the nitrogen-doped carbon nanotube (NCNT) bouquets and their electrochemical properties. Electrochem Commun 35:80–83

    Article  CAS  Google Scholar 

  16. Xiao CH, Zou Q, Tang YH (2014) Surface nitrogen-enriched carbon nanotubes for uniform dispersion of platinum nanoparticles and their electrochemical biosensing property. Electrochim Acta 143:10–17

    Article  CAS  Google Scholar 

  17. Guo SY, Xu L, Xu BB, Sun ZX, Wang LH (2015) A ternary nanocomposite electrode of polyoxometalate/carbon nanotubes/gold nanoparticles for electrochemical detection of hydrogen peroxide. Analyst 140(3):820–826

    Article  CAS  Google Scholar 

  18. Fernandes DM, Nunes M, Araujo MP (2016) Carbon nanomaterials-based modified electrodes for electrocatalysis. Bol Grupo Esp Carbon 40:3–8

    Google Scholar 

  19. Sosnowska M, Goral-Kurbiel M, Skunik-Nuckowska M, Jurczakowski R, Kulesza PJ (2013) Hybrid materials utilizing polyelectrolyte-derivatized carbon nanotubes and vanadium-mixed addenda heteropolytungstate for efficient electrochemical charging and electrocatalysis. J Solid State Electrochem 17(6):1631–1640

    Article  CAS  Google Scholar 

  20. Ji YC, Huang LJ, Hu J, Streb C, Song YF (2015) Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems. Energy Environ Sci 8(3):776–789

    Article  CAS  Google Scholar 

  21. Wang H, Kawasaki N, Yokoyama T, Yoshikawa H, Awaga K (2012) Molecular cluster batteries of nano-hybrid materials between Keggin POMs and SWNTs. Dalton Trans 41(33):9863–9866

    Article  CAS  Google Scholar 

  22. Ji YC, Hu J, Huang LJ, Chen W, Streb C, Song YF (2015) Covalent attachment of Anderson-type polyoxometalates to single-walled carbon nanotubes gives enhanced performance electrodes for lithium ion batteries. Chem-Eur J 21(17):6469–6474

    Article  CAS  Google Scholar 

  23. Chen W, Huang LJ, Hu J, Li TF, Jia FF, Song YF (2014) Connecting carbon nanotubes to polyoxometalate clusters for engineering high-performance anode materials. Phys Chem Chem Phys 16(36):19668–19673

    Article  CAS  Google Scholar 

  24. Akter T, Hu KW, Lian K (2011) Investigations of multilayer polyoxometalates-modified carbon nanotubes for electrochemical capacitors. Electrochim Acta 56(14):4966–4971

    Article  CAS  Google Scholar 

  25. Bajwa G, Genovese M, Lian K (2013) Multilayer polyoxometalates-carbon nanotube composites for electrochemical capacitors. ECS J Solid State Sci Technol 2(10):M3046–M3050

    Article  CAS  Google Scholar 

  26. Fernandes DM, Freire C (2015) Carbon nanomaterial-phosphomolybdate composites for oxidative Electrocatalysis. ChemElectroChem 2(2):269–279

    Article  CAS  Google Scholar 

  27. Li ZF, Chen JH, Pan DW, Tao WY, Nie LH, Yao SZ (2006) A sensitive amperometric bromate sensor based on multi-walled carbon nanotubes/phosphomolybdic acid composite film. Electrochim Acta 51(20):4255–4261

    Article  CAS  Google Scholar 

  28. Fernandes DM, Barbosa ADS, Pires J, Balula SS, Cunha-Silva L, Freire C (2013) Novel composite material Polyoxovanadate@MIL-101(Cr): a highly efficient Electrocatalyst for ascorbic acid oxidation. ACS Appl Mater Interfaces 5(24):13382–13390

    Article  CAS  Google Scholar 

  29. Fernandes DM, Granadeiro CM, de Sousa PMP, Grazina R, Moura JJG, Silva P, Paz FAA, Cunha-Silva L, Balula SS, Freire C (2014) SiW11Fe@ MIL-101(Cr) composite: a novel and versatile electrocatalyst. ChemElectroChem 1(8):1293–1300

    Article  CAS  Google Scholar 

  30. Fernandes DM, Nunes M, Carvalho RJ, Bacsa R, Mbomekalle I-M, Serp P, Oliveira P, Freire C (2015) Biomolecules electrochemical sensing properties of a PMo11V@N-doped few layer graphene nanocomposite. Inorganics 3:178–193

    Article  CAS  Google Scholar 

  31. Taei M, Shavakhi M, Hadadzadeh H, Movahedi M, Rahimi M, Habibollahi S (2015) Simultaneous determination of epinephrine, acetaminophen, and tryptophan using Fe2O3(0.5)/SnO2(0.5) nanocomposite sensor. J Appl Electrochem 45(2):185–195

    Article  CAS  Google Scholar 

  32. Liu BD, Ouyang XQ, Ding YP, Luo LQ, Xu D, Ning YQ (2016) Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan. Talanta 146:114–121

    Article  CAS  Google Scholar 

  33. Mazloum-Ardakani M, Zokaie M, Khoshroo A (2015) Carbon nanotube electrochemical sensor based on and benzofuran derivative as a mediator for the determination of levodopa, acetaminophen, and tryptophan. Ionics 21(6):1741–1749

    Article  CAS  Google Scholar 

  34. Raoof JB, Chekin F, Ojani R, Barari S, Anbia M, Mandegarzad S (2012) Synthesis and characterization of ordered mesoporous carbon as electrocatalyst for simultaneous determination of epinephrine and acetaminophen. J Solid State Electrochem 16(12):3753–3760

    Article  CAS  Google Scholar 

  35. Ye DX, Xu YH, Luo LQ, Ding YP, Wang YL, Liu XJ (2012) LaNi0.5Ti0.5O3/CoFe2O4-based sensor for sensitive determination of paracetamol. J Solid State Electrochem 16(4):1635–1642

    Article  CAS  Google Scholar 

  36. Fernandes DM, Silva N, Pereira C, Moura C, Magalhaes J, Bachiller-Baeza B, Rodriguez-Ramos I, Guerrero-Ruiz A, Delerue-Matos C, Freire C (2015) MnFe2O4@CNT-N as novel electrochemical nanosensor for determination of caffeine, acetaminophen and ascorbic acid. Sens Actuator B-Chem 218:128–136

    Article  CAS  Google Scholar 

  37. Rajalakshmi K, John SA (2014) Sensitive and selective determination of L-tryptophan at physiological pH using functionalized multiwalled carbon nanotubes-nanostructured conducting polymer composite modified electrode. J Electroanal Chem 734:31–37

    Article  CAS  Google Scholar 

  38. Keyvanfard M, Shakeri R, Karimi-Maleh H, Alizad K (2013) Highly selective and sensitive voltammetric sensor based on modified multiwall carbon nanotube paste electrode for simultaneous determination of ascorbic acid, acetaminophen and tryptophan. Mater Sci Eng C-Mater Biol Appl 33(2):811–816

    Article  CAS  Google Scholar 

  39. Nasirizadeh N, Shekari Z, Zare HR, Shishehbore MR, Fakhari AR, Ahmar H (2013) Electrosynthesis of an imidazole derivative and its application as a bifunctional electrocatalyst for simultaneous determination of ascorbic acid, adrenaline, acetaminophen, and tryptophan at a multi-wall carbon nanotubes modified electrode surface. Biosens Bioelectron 41:608–614

    Article  CAS  Google Scholar 

  40. Faba L, Criado YA, Gallegos-Suarez E, Perez-Cadenas M, Diaz E, Rodriguez-Ramos I, Guerrero-Ruiz A, Ordonez S (2013) Preparation of nitrogen-containing carbon nanotubes and study of their performance as basic catalysts. Appl Catal A-Gen 458:155–161

    Article  CAS  Google Scholar 

  41. Himeno S, Ishio N (1998) A voltammetric study on the formation of V(V)- and V(IV)-substituted molybdophosphate(V) complexes in aqueous solution. J Electroanal Chem 451(1–2):203–209

    Article  CAS  Google Scholar 

  42. Kong XK, Sun ZY, Chen M, Chen CL, Chen QW (2013) Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene. Energy Environ Sci 6(11):3260–3266

    Article  CAS  Google Scholar 

  43. Kumarasinghe AR, Samaranayake L, Bondino F, Magnano E, Kottegoda N, Carlino E, Ratnayake UN, de Alwis AAP, Karunaratne V, Amaratunga GAJ (2013) Self-assembled multilayer graphene oxide membrane and carbon nanotubes synthesized using a rare form of natural graphite. J Phys Chem C 117(18):9507–9519

    Article  CAS  Google Scholar 

  44. Lipinska ME, Rebelo SLH, Pereira MFR, Gomes J, Freire C, Figueiredo JL (2012) New insights into the functionalization of multi-walled carbon nanotubes with aniline derivatives. Carbon 50(9):3280–3294

    Article  CAS  Google Scholar 

  45. Jang JW, Lee CE, Lyu SC, Lee TJ, Lee CJ (2004) Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes. Appl Phys Lett 84(15):2877–2879

    Article  CAS  Google Scholar 

  46. Wang DW, Su DS (2014) Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ Sci 7(2):576–591

    Article  Google Scholar 

  47. Liang XQ, Zhong J, Shi YL, Guo J, Huang GL, Hong CH, Zhao YD (2015) Hydrothermal synthesis of highly nitrogen-doped few-layer graphene via solid-gas reaction. Mater Res Bull 61:252–258

    Article  CAS  Google Scholar 

  48. Sadakane M, Steckhan E (1998) Electrochemical properties of polyoxometalates as electrocatalysts. Chem Rev 98(1):219–237

    Article  CAS  Google Scholar 

  49. Wang SF, Xie F, Hu RF (2007) Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen. Sens Actuator B-Chem 123(1):495–500

    Article  CAS  Google Scholar 

  50. Amiri-Aref M, Raoof JB, Ojani R (2014) A highly sensitive electrochemical sensor for simultaneous voltammetric determination of noradrenaline, acetaminophen, xanthine and caffeine based on a flavonoid nanostructured modified glassy carbon electrode. Sens Actuator B-Chem 192:634–641

    Article  CAS  Google Scholar 

  51. Barsan MM, Toledo CT, Brett CMA (2015) New electrode architectures based on poly(methylene green) and functionalized carbon nanotubes: characterization and application to detection of acetaminophen and pyridoxine. J Electroanal Chem 736:8–15

    Article  CAS  Google Scholar 

  52. Ghica ME, Ferreira GM, Brett CMA (2015) Poly(thionine)-carbon nanotube modified carbon film electrodes and application to the simultaneous determination of acetaminophen and dipyrone. J Solid State Electrochem 19(9):2869–2881

    Article  CAS  Google Scholar 

  53. Tsierkezos NG, Othman SH, Ritter U (2014) Nitrogen-doped carbon nanotubes modified with gold nanoparticles for simultaneous analysis of N-acetylcysteine and acetaminophen. J Solid State Electrochem 18(3):629–637

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Fundação para a Ciência e a Tecnologia (FCT), FEDER under Programme PT2020 (Project UID/QUI/50006/2013) and Programme FCT–UT Austin, Emerging Technologies (Project UTAP-ICDT/CTM-NAN/0025/2014) is acknowledged for the financial funding. DF (SFRH/BPD/74877/2010) and MN (SFRH/BD/79171/2011) also thank FCT for their grants. Thanks are also due to COST Action CM-1203 PoCheMoN.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diana M. Fernandes or Cristina Freire.

Additional information

Research highlights

• N-doped carbon nanotubes (N-CNT) functionalized with PMo11V were successfully prepared.

• The nanocomposite was successfully immobilized into GCE electrode.

• Modified electrode showed electrocatalytic activity for acetaminophen oxidation.

Electronic supplementary material

ESM 1

(DOCX 228 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, D.M., Nunes, M., Bachiller-Baeza, B. et al. PMo11V@N-CNT electrochemical properties and its application as electrochemical sensor for determination of acetaminophen. J Solid State Electrochem 21, 1059–1068 (2017). https://doi.org/10.1007/s10008-016-3463-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3463-5

Keywords

Navigation