Skip to main content

Advertisement

Log in

Evaluation of a novel composite based on functionalized multi-walled carbon nanotube and iron phthalocyanine for electroanalytical determination of isoniazid

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel platform for electroanalysis of isoniazid based on graphene-functionalized multi-walled carbon nanotube as support for iron phthalocyanine (FePc/f-MWCNT) has been developed. The FePc/f-MWCNT composite has been dropped on glassy carbon forming FePc/f-MWCNT/GC electrode, which is sensible for isoniazid, decreasing substantially its oxidation potential to +200 mV vs Ag/AgCl. Electrochemical and electroanalytical properties of the FePc/f-MWCNT/GC-modified electrode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electrochemical microscopy, and amperometry. The sensor presents better performance in 0.1 mol L−1 phosphate buffer at pH 7.4. Under optimized conditions, a linear response range from 5 to 476 μmol L−1 was obtained with a limit of detection and sensitivity of 0.56 μmol L−1 and 0.023 μA L μmol−1, respectively. The relative standard deviation for 10 determinations of 100 μmol L−1 isoniazid was 2.5%. The sensor was successfully applied for isoniazid selective determination in simulated body fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Escurra CM, Boogaard JVD, Jdema DI, Boeree M, Aarnoutse R (2012) Therapeutic drug monitoring in the treatment of tuberculosis patients. Pulm Pharmacol Ther 25:83–86

    Article  Google Scholar 

  2. Kim HJ, Seo KA, Kim HM, Jeong ES, Ghim JL, Lee SH, Lee YM, Kim DH, Shin JG (2015) Simple and accurate quantitative analysis of 20 anti-tuberculosis drugs in human plasma using liquid chromatography-electrospray ionization-tandem mass spectrometry. J Pharmaceut Biomed 102:9–16

    Article  CAS  Google Scholar 

  3. Li G, Zheng X (2007) Highly sensitive electrogenerated chemiluminescence isoniazid with NiO nanoparticles-modified graphite electrode. Anal Lett 40:1853–1863

    Article  CAS  Google Scholar 

  4. Jena BK, Raj CR (2010) Au nanoparticle decorated silicate network for the amperometric sensing of isoniazid. Talanta 80:1653–1656

    Article  CAS  Google Scholar 

  5. Peloquin CA (1997) Using therapeutic drug monitoring to dose the antimycobacterial drugs. Clin Chest Med 18:79–87

    Article  CAS  Google Scholar 

  6. Chellini PR, Lages EB, Franco PHC, Nogueira FHA, César IC, Pianetti GA (2015) Development and validation of HPLC method for simultaneous determination of rifampicin, isoniazid, pyrazinamide, and ethambutol hydrochloride in pharmaceutical formulations. J AOAC Int 98:1234–1239

    Article  CAS  Google Scholar 

  7. Swamy N, Basavaiah K, Vinay B (2015) Titrimetric assay of isoniazid with perchloric acid in nonaqueous medium. J Anal Chem 70:696–699

    Article  CAS  Google Scholar 

  8. Abolhasani J, Hassanzadeh J (2014) Potassium permanganate–acridine yellow chemiluminescence system for the determination of fluvoxamine, isoniazid and ceftriaxone. Luminescence 29:1053–1058

    Article  CAS  Google Scholar 

  9. Stets S, Tavares TM, Zamora PGP, Pessoa CA, Nagata N (2013) Simultaneous determination of rifampicin and isoniazid in urine and pharmaceutical formulations by multivariate visible spectrophotometry. J Braz Chem Soc 24:1198–1205

    CAS  Google Scholar 

  10. Zargar B, Hatamie A (2013) Localized surface plasmon resonance of gold nanoparticles as colorimetric probes for determination of isoniazid in pharmacological formulation. Spectrochim Acta A 106:185–189

    Article  CAS  Google Scholar 

  11. de Assis JV, Teixeira MG, Soares CGP, Lopes JF, Carvalho GSL, Lourenço MCS, de Almeida MV, de Almeida WB, Fernandes SA (2012) Experimental and theoretical NMR determination of isoniazid and sodium p-sulfonatocalix [n] arenes inclusion complexes. Eur J Pharm Sci 47:539–548

    Article  Google Scholar 

  12. Wu B, Wang Z, Xue Z, Zhou X, Du J, Liu X, Lu X (2012) A novel molecularly imprinted electrochemiluminescence sensor for isoniazid detection. Analyst 137:3644–3652

    Article  CAS  Google Scholar 

  13. Liu Y, Fu Z, Wang L (2011) Capillary electrophoresis analysis of isoniazid using luminol-periodate potassium chemiluminescence system. Luminescence 26:397–402

    Article  CAS  Google Scholar 

  14. Safavi A, Bagheri M (2008) Design of an optical sensor for indirect determination of isoniazid. Spectrochim Acta A 70:735–739

    Article  Google Scholar 

  15. Lapa RAS, Lima JLFC, Santos JLM (2000) Fluorimetric determination of isoniazid by oxidation with cerium (IV) in a multicommutated flow system. Anal Chim Acta 419:17–23

    Article  CAS  Google Scholar 

  16. Zamora LL, Mateo JVG, Calatayud JM (1992) Entrapment of reagents in polymeric materials. Indirect atomic absorption spectrometric determination of isoniazid by oxidation with manganese dioxide incorporated in polyester resin beads in a flow-injection system. Anal Chim Acta 265:81–86

    Article  Google Scholar 

  17. Absalan G, Akhond M, Soleimani M, Ershadifar H (2016) Efficient electrocatalytic oxidation and determination of isoniazid on carbon ionic liquid electrode modified with electrodeposited palladium nanoparticles. J Electroanal Chem 761:1–7

    Article  CAS  Google Scholar 

  18. Duarte JC, Luz RCS, Damos FS, de Oliveira AB, Kubota LT (2007) Tetracyanoquinodimethanide adsorbed on a silica gel modified with titanium oxide for electrocatalytic oxidation of hydrazine. J Solid State Electrochem 11:631–638

    Article  CAS  Google Scholar 

  19. Rastogi PK, Ganesan V, Azad UP (2016) Electrochemical determination of nanomolar levels of isoniazid in pharmaceutical formulation using silver nanoparticles decorated copolymer. Electrochim Acta 188:818–824

    Article  CAS  Google Scholar 

  20. Wu B, Hou L, Zhang T, Han Y, Kong Y (2015) A molecularly imprinted electrochemical sensor based on a gold nanoparticle/carbon nanotube hybrid material for the sensitive detection of isoniazid. Anal Methods 7:9121–9129

    Article  CAS  Google Scholar 

  21. Zhu X, J XU, Duan X, L L, Zhang K, Y Y, Xing H, Gao Y, Dong L, Sun H, Yang T (2015) Controlled synthesis of partially reduced graphene oxide: enhance electrochemical determination of isoniazid with high sensitivity and stability. J Electroanal Chem 757:183–191

    Article  CAS  Google Scholar 

  22. Quintino MSM, Angnes L (2006) Fast BIA-amperometric determination of isoniazid in tablets. J Pharmaceut Biomed 42:400–404

    Article  CAS  Google Scholar 

  23. Yan X, Bo X, Guo L (2011) Electrochemical behaviors and determination of isoniazid at ordered mesoporous carbon modified electrode. Sens Actuat B-Chem 155:837–842

    Article  CAS  Google Scholar 

  24. Martins PR, Ferreira LMC, Araki K, Angnes L (2014) Influence of cobalt content on nanostructured alpha-phase-nickel hydroxide modified electrodes for electrocatalytic oxidation of isoniazid. Sens Actuat B-Chem 192:601–606

    Article  CAS  Google Scholar 

  25. Cheemalapati S, Chen SM, Ali MA, Hemaid FMA (2014) Enhanced electrocatalytic oxidation of isoniazid at electrochemically modified rhodium electrode for biological and pharmaceutical analysis. Colloid Surface B 121:444–450

    Article  CAS  Google Scholar 

  26. Yang G, Wang C, Zhang R, Wang C, Qu Q, Hu H (2008) Poly(amidosulfonic acid) modified glassy carbon electrode for determination of isoniazid in pharmaceuticals. Bioelectrochemistry 73:37–42

    Article  CAS  Google Scholar 

  27. Satyanarayana M, Reddy KK (2014) Gobi KV (2014) multiwall carbon nanotube ensembled biopolymer electrode for selective determination of isoniazid in vitro. Anal Methods 6:3772–3778

    Article  CAS  Google Scholar 

  28. Azad UP, Prajapati N, Ganesan V (2015) Selective determination of isoniazid using bentonite clay modified electrodes. Bioelectrochemistry 101:120–125

    Article  CAS  Google Scholar 

  29. Holloway AF, Wildgoose GG, Compton RG, Shao L, Green MLH (2008) The influence of edge-plane defects and oxygen-containing surface groups on the voltammetry of acid-treated, annealed and “super-annealed” multiwalled carbon nanotubes. J Solid State Electrochem 12:1337–1348

    Article  CAS  Google Scholar 

  30. Báez DF, Bollo S (2016) A comparative study of electrochemical performances of carbon nanomaterial-modified electrodes for DNA detection. Nanotubes or graphene? J Solid State Electrochem 20:1059–1064

    Article  Google Scholar 

  31. Gaonan L, Tongtong L, Ying D, Yong C, Fan S, Wei S, Zhenfan S (2013) Electrodeposited nanogold decorated graphene modified carbon ionic liquid electrode for the electrochemical myoglobin biosensor. J Solid State Electrochem 17:2333–2340

    Article  Google Scholar 

  32. Prasannakumar S, Manjunatha R, Nethravathi C, Suresh SG, Rajamathi M, Venkatesha TV (2012) Graphene-carbon nanotubes modified graphite electrode for the determination of nicotinamide adenine dinucleotide and fabrication of alcohol biosensor. J Solid State Electrochem 16:3189–3199

    Article  CAS  Google Scholar 

  33. Lu D, Lin S, Wang L, Li T, Wang C, Zhang Y (2014) Sensitive detection of luteolin based on poly (diallyldimethylammonium chloride)-functionalized graphene-carbon nanotubes hybrid/β-cyclodextrin composite film. J Solid State Electrochem 18:269–278

    Article  CAS  Google Scholar 

  34. Yang H, Li Y, Liu Y, Zhang Y, Zhao Y, Zhao M (2015) One-pot chemical blasting synthesis of the bamboo-like multiwalled carbon nanotubes/graphene oxide nanocomposite and its application in electrochemical detection of dopamine. J Solid State Electrochem 19:145–152

    Article  CAS  Google Scholar 

  35. Zanin H, Rosa CMR, Eliaz N, May PW, Marciano FR, Lobo AO (2015) Assisted deposition of nano-hydroxyapatite onto exfoliated carbon nanotube oxide scaffolds. Nanoscale 7:10218–10232

    Article  CAS  Google Scholar 

  36. Zanin H, Ferreira AM, da Silva NS, Marciano FR, Corat EJ, Lobo AO (2014) Graphene and carbon nanotube composite enabling a new prospective treatment for trichomoniasis disease. Mat Sci Eng C-Bio S 41:65–69

    Article  CAS  Google Scholar 

  37. Song Z, Lu J, Zhao T (2001) Chemiluminescence sensor for isoniazid with controlled-reagent-release technology. Talanta 53:1171–1177

    Article  CAS  Google Scholar 

  38. Botta AC, Mollica FB, Ribeiro CF, de Araújo MAM, de Nicoló RD, Balducci I (2010) Influence of topical acidulated phosphate fluoride on surface roughness of human enamel and different restorative materials. Rev Odonto Ciênc 225:83–87

    Article  Google Scholar 

  39. Liu L, Qiu CL, Chen Q, Zhang SM (2006) Corrosion behavior of Zr-based bulk metallic glasses in different artificial body fluids. J Alloy Comp 425:268–273

    Article  CAS  Google Scholar 

  40. Zhang H, Wu L, Li Q, Du X (2008) Determination of isoniazid among pharmaceutical samples and the patients’ saliva samples by using potassium ferricyanide as spectroscopic probe reagent. Anal Chim Acta 628:67–72

    Article  CAS  Google Scholar 

  41. Eidus L, Harnanansingh AMT (1971) A more sensitive spectrophotometric method for determination of isoniazid in serumor plasma. Clinical Chem 17:492–494

    CAS  Google Scholar 

  42. Hebié S, Bayo-Bangoura M, Bayo K, Servat K, Morais C, Napporn TW, Kokoh KB (2016) Electrocatalytic activity of carbon-supported metallophthalocyanine catalysts toward oxygen reduction reaction in alkaline solution. J Solid State Electrochem 20:931–942

    Article  Google Scholar 

  43. Linares C, Geraldo D, Paez M, Zagal JH (2003) Non-linear correlations between formal potential and Hammett parameters of substituted iron phthalocyanines and catalytic activity for the electro-oxidation of hydrazine. J Solid State Electrochem 7:626–631

    Article  CAS  Google Scholar 

  44. Nemes Á, Inzelt G (2014) Electrochemical and nanogravimetric studies of iron phthalocyanine microparticles immobilized on gold in acidic and neutral media. J Solid State Electrochem 18:3327–3337

    Article  CAS  Google Scholar 

  45. Si X, Jiang L, Wang X, Ding Y, Luo L (2015) Determination of isoniazid content via cysteic acid/graphene modified glassy carbon electrode. Anal Methods 7:793–798

    Article  CAS  Google Scholar 

  46. Brownson DAC, Banks CE (2014) The handbook of graphene electrochemistry. Springer, London

    Book  Google Scholar 

  47. Shumba M, Nyokong T (2016) Electrode modification using nanocomposites of boron or nitrogen doped graphene oxide and cobalt (II) tetra aminophenoxy phthalocyanine nanoparticles. Electrochim Acta 196:457–469

    Article  CAS  Google Scholar 

  48. Zúñiga C, Tasca F, Calderon S, Farías D, Recio FJ, Zagal JH (2016) Reactivity indexes for the electrocatalytic oxidation of hydrogen peroxide promoted by several ligand-substituted and unsubstituted Co phthalocyanines adsorbed on graphite. J. Electroanal Chem 765:22–29

    Article  Google Scholar 

  49. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  50. Bard AJ, Mirkin MV, Unwin PR, Wipf DO (1992) Scanning electrochemical microscopy. 12. Theory and experiment of the feedback mode with finite heterogeneous electron-transfer kinetics and arbitrary substrate size. J Phys Chem 96:1861–1868

    Article  CAS  Google Scholar 

  51. Andrieux CP, Savéant JM (1978) Heterogeneous (chemically modified electrodes, polymer electrodes) vs. homogeneous catalysis of electrochemical reactions. J Electroanal Chem 93:163–168

    Article  CAS  Google Scholar 

  52. Brett CMA, Brett AMO (1994) Electrochemistry principles, methods, and applications. Oxford University Press, London

    Google Scholar 

  53. Sabzi RE (2005) Electrocatalytic oxidation of thiosulfate at glassy carbon electrode chemically modified with cobalt pentacyanonitrosylferrate. J Braz Chem Soc 16:1262–1268

    Article  CAS  Google Scholar 

  54. Karimi MA, Mehrjardi AH, Ardakani MM, Ardakani RB, Mashhadizadeh MH, Sargazi S (2010) Study of electrocatalytic oxidation of isoniazid drug using alizarin red S as a mediator on the glassy carbon electrode. Int J Electrochem Sci 5:1634–1648

    CAS  Google Scholar 

  55. Analytical Methods Committee (1987) Recommendations for the definition, estimation and use of the detection limit. Analyst 112:199–204

    Article  Google Scholar 

  56. Majidi MR, Jouyban A, Zeynali KA (2006) Voltammetric behavior and determination of isoniazid in pharmaceuticals by using overoxidized polypyrrole glassy carbon modified electrode. J. Electroanal Chem 589:32–37

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Brazilian funding agencies FAPEMA (00738/2014, BM-01363/15, and 00753/14), CNPq (305865/2013-7, 401689/2015-8 and 305680/2015-3), and FAPESP (2014/02163-7) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flávio Santos Damos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spindola, R.F., Zanin, H., Macena, C.S. et al. Evaluation of a novel composite based on functionalized multi-walled carbon nanotube and iron phthalocyanine for electroanalytical determination of isoniazid. J Solid State Electrochem 21, 1089–1099 (2017). https://doi.org/10.1007/s10008-016-3451-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3451-9

Keywords

Navigation