Skip to main content
Log in

TiO2 nanotube arrays: a study on the surface electrochemical reactions during the photoelectrochemical process

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The surface electrochemical reactions of TiO2 nanotube arrays (NTAs) corresponding to different active species of TiO2 NTAs (·OH, h+, and ·O2 ) play key roles during the photoelectrochemical process. Effect of the active species and surface electrochemical reactions are studied by adding capture agents of isopropyl alcohol (IPA) for ·OH, ammonium oxalate ((NH4)2C2O2) for h+, and benzoquinone (BQ) for ·O2 radicals. The changes of photocurrent with addition of capture agents confirm the existence of ·OH, h+, and ·O2 during photoelectrochemical process. IPA and (NH4)2C2O2 additions are found to enhance the photocurrent by accelerating the consumption velocity of h+ indirectly and directly and restricting the chargers recombination. BQ can decrease the photocurrent stepwise to 0 due to the indirect consumption of e on surface of TiO2 NTAs. The consumption of h+ by forming ·OH is 38% that of the whole consumption of h+. The ratio of chargers recombination is higher than 80.8% that of the whole photogenerated chargers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Peining Z, Yongzhi W, Reddy MV, Nair AS, Shengjie P, Sharma N, Ramakrishna S (2012) TiO2 nanoparticles synthesized by the molten salt method as a dual functional material for dye-sensitized solar cells. RSC Adv 2:5123–5126

    Article  Google Scholar 

  2. Reddy MV, Jose R, Teng TH, Chowdari BVR, Ramakrishna S (2010) Preparation and electrochemical studies of electrospun TiO2 nanofibers and molten salt method nanoparticles. Electrochim Acta 55:3109–3117

    Article  CAS  Google Scholar 

  3. Lan Y, Gao XP, Zhu HY, Zheng ZF, Yan TY, Wu F, Song DY (2005) Titanate nanotubes and nanorods prepared from rutile powder. Adv Funct Mater 15:1310–1318

    Article  CAS  Google Scholar 

  4. Szkoda M, Siuzdak K, Lisowska-Oleksiak A, Karczewski J, Ryl J (2015) Facile preparation of extremely photoactive boron-doped TiO2 nanotubes arrays. Electrochem Commun 60:212–215

    Article  CAS  Google Scholar 

  5. Reddy MV, Teoh XV, Nguyen TB, Lim YM, Chowdari BVR (2012) Effect of 0.5 M NaNO3: 0.5 M KNO3 and 0.88 M LiNO3: 0.12 M LiCl molten salts, and heat treatment on electrochemical properties of TiO2. J Electrochem Soc 159:A762–A769

    Article  CAS  Google Scholar 

  6. Reddy MV, Adams S, Liang GTJ, Mingze IF, An HVT, Chowdari BVR (2014) Low temperature molten salt synthesis of anatase TiO2 and its electrochemical properties. Solid State Ionics 262:120–123

    Article  CAS  Google Scholar 

  7. Cherian CT, Reddy MV, Magdaleno T, Sow CH, Ramanujachary KV, Rao GS, Chowdari BVR (2012) (N, F)-Co-doped TiO2: synthesis, anatase–rutile conversion and Li-cycling properties. CrystEngComm 14:978–986

    Article  CAS  Google Scholar 

  8. Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M (1999) Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal 27:629–637

    Article  CAS  Google Scholar 

  9. Zwilling V, Aucouturier M, Darque-Ceretti E (1999) Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. Electrochim Acta 45:921–929

    Article  CAS  Google Scholar 

  10. Macak JM, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P (2005) Smooth anodic TiO2 nanotubes. Angew Chem Int Ed 44:7463–7465

    Article  CAS  Google Scholar 

  11. Grimes CA (2007) Synthesis and application of highly ordered arrays of TiO2 nanotubes. J Mater Chem 17:1451–1457

    Article  CAS  Google Scholar 

  12. Liu Z, Zhang X, Nishimoto S, Murakami T, Fujishima A (2008) Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays. Environ Sci Technol 42:8547–8551

    Article  CAS  Google Scholar 

  13. Wu Z, Wang Y, Sun L, Mao Y, Wang M, Lin C (2014) An ultrasound-assisted deposition of NiO nanoparticles on TiO2 nanotube arrays for enhanced photocatalytic activity. J Mater Chem A 2:8223–8229

    Article  CAS  Google Scholar 

  14. Chae SY, Park MK, Lee SK, Kim TY, Kim SK, Lee WI (2003) Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films. Chem Mater 15:3326–3331

    Article  CAS  Google Scholar 

  15. Joo J, Kwon SG, Yu T, Cho M, Lee J, Yoon J, Hyeon T (2005) Large-scale synthesis of TiO2 nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E. coli. J Phys Chem B 109:15297–15302

    Article  CAS  Google Scholar 

  16. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  17. Kudo A (2003) Photocatalyst materials for water splitting. Catal Surv Jpn 7:31–38

    Article  CAS  Google Scholar 

  18. Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorrist RC, Wang C, Zhang JZ, Li Y (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11:3026–3033

    Article  CAS  Google Scholar 

  19. Varghese OK, Gong D, Paulose M, Ong KG, Dickey EC, Grimes CA (2003) Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv Mater 15:624–627

    Article  CAS  Google Scholar 

  20. Hu X, Li G, Yu JC (2009) Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir 26:3031–3039

    Article  Google Scholar 

  21. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986

    Article  CAS  Google Scholar 

  22. Siuzdak K, Szkoda M, Lisowska-Oleksiak A, Grochowska K, Karczewski J, Ryl J (2015) Thin layer of ordered boron-doped TiO2 nanotubes fabricated in a novel type of electrolyte and characterized by remarkably improved photoactivity. Appl Surf Sci 357:942–950

    Article  CAS  Google Scholar 

  23. Szkoda M, Lisowska-Oleksiak A, Siuzdak K (2016) Optimization of boron-doping process of titania nanotubes via electrochemical method toward enhanced photoactivity. J Solid State Electr 20:1765–1774

    Article  CAS  Google Scholar 

  24. Szkoda M, Siuzdak K, Lisowska-Oleksiak A (2016) Optimization of electrochemical doping approach resulting in highly photoactive iodine-doped titania nanotubes. J Solid State Electr 20:563–569

    Article  CAS  Google Scholar 

  25. Liu H, Xu G, Wang J, Lv J, Zheng Z, Wu Y (2014) Photoelectrochemical properties of TiO2 nanotube arrays modified with BiOCl nanosheets. Electrochim Acta 130:213–221

    Article  CAS  Google Scholar 

  26. Pang Y, Xu G, Zhang X, Lv J, Shi K, Zhai P, Xue Q, Wang X, Wu Y (2015) Photoelectrochemical properties and the detection mechanism of Bi2WO6 nanosheet modified TiO2 nanotube arrays. Dalton Trans 44:17784–17794

    Article  CAS  Google Scholar 

  27. Pang Y, Xu G, Fan C, Lv J, Liu J, Wu Y (2016) Photoelectrochemical detection performance and mechanism discussion of Bi2O3 modified TiO2 nanotube arrays. RSC Adv 6:61367–61377

    Article  CAS  Google Scholar 

  28. Nakamura R, Sato S (2002) Oxygen species active for photooxidation of n-decane over TiO2 surfaces. J Phys Chem B 106:5893–5896

    Article  CAS  Google Scholar 

  29. Tan S, Ji Y, Zhao Y, Zhao A, Wang B, Yang J, Hou J (2011) Molecular oxygen adsorption behaviors on the rutile TiO2 (110)-1×1 surface: an in situ study with low-temperature scanning tunneling microscopy. J Am Chem Soc 133:2002–2009

    Article  CAS  Google Scholar 

  30. Setvín M, Aschauer U, Scheiber P (2013) Reaction of O2 with subsurface oxygen vacancies on TiO2 anatase (101). Science 341:988–991

    Article  Google Scholar 

  31. Li W, Li D, Lin Y, Wang P, Chen W, Fu X, Shao Y (2012) Evidence for the active species involved in the photodegradation process of methyl orange on TiO2. J Phys Chem C 116:3552–3560

    Article  CAS  Google Scholar 

  32. Wang J, Wang P, Cao Y, Chen J, Li W, Shao Y, Zheng Y, Li D (2013) A high efficient photocatalyst Ag3VO4/TiO2/graphene nanocomposite with wide spectral response. Appl Cata B: Environ 136:94–102

    Article  Google Scholar 

  33. Zhou X, Häublein V, Liu N, Nguyen N, Zolnhofer E, Tsuchiya H, Killian M, Meyer K, Frey L, Schmuki P (2016) Nitrogen-ion implantation at low dose provides noble-metal-free photocatalytic H2-evolution activity. Angew Chem Int Ed 55:3763–3767

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Nature Science Foundation of China (51102071, 51172059 and 51272063), Fundamental Research Funds for the Central Universities (2013HGQC0005), National Basic Research Program of China (973 Program, 2014CB660815), and Nature Science Foundation of Anhui Province (1408085QE86, 1608085QE105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangqing Xu or Yucheng Wu.

Electronic supplementary material

ESM 1

(DOCX 516 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, Y., Xu, G., Fan, C. et al. TiO2 nanotube arrays: a study on the surface electrochemical reactions during the photoelectrochemical process. J Solid State Electrochem 21, 987–993 (2017). https://doi.org/10.1007/s10008-016-3450-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3450-x

Keywords

Navigation