Skip to main content
Log in

Silver(I) chloride-polypyrrole composite: electrochemical preparation, characterization, and application as a SERS platform

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A new electrochemical-chemical-electrochemical synthetic route to silver(I) chloride nanoparticle-polypyrrole composites is presented. The chemical precipitation of silver chloride particles inside a polymer matrix was studied at a selected oxidation level of the conducting polymer. Cyclic voltammetry and electrochemical impedance spectroscopy evidence chemical interaction between the two redox subsystems. The electrochemistry of the inorganic seeds of the composite was utilized to find out the best condition for the enhancement of the Raman signal of sodium benzoate in water. Scanning electron microscopy and atomic analysis of the organic-inorganic hybrid material deposited on platinum by electron diffraction spectroscopy were undertaken to follow the surface morphology and composition of the material. The sub-micrometer inorganic seeds of the composite deposited on a carbon fiber were shown by transmission electron microscopy to be composed of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Fig. 10

Similar content being viewed by others

References

  1. Haiqing L, Johnson VJ, Seong JB, Min SH, Jun HS, Kwang-Ho K, Il K (2014) Controlled accommodation of metal nanostructures within the matrices of polymer architectures through solution-based synthetic strategies. Progr Polym Sci 39:1878–1907

    Article  Google Scholar 

  2. Sierra-Martin B, Fernandez-Barbero A (2016) Inorganic/polymer hybrid nanoparticles for sensing applications. Adv Colloid Interf Sci 233:25–37

    Article  CAS  Google Scholar 

  3. Mahouche-Chergui S, Guerrouache M, Carbonnier B, Chehimi MM (2013) Polymer-immobilized nanoparticles. Colloid Surf A: Physicochem Eng Asp 439:43–68

    Article  CAS  Google Scholar 

  4. Chen A, Wang H, Li X (2005) One-step process to fabricate Ag-polypyrrole coaxial nanocables. Chem Commun:1863–1864

  5. Wang S, Shi G (2007) Uniform silver/polypyrrole core–shell nanoparticles synthesized by hydrothermal reaction. Mater Chem Phys 102:255–259

    Article  CAS  Google Scholar 

  6. Munoz-Rojas D, Oro-Sole J, Ayyad O, Gomez-Romero P (2008) Facile one-pot synthesis of self-assembled silver@polypyrrole core/shell nanosnakes. Small 4:1301–1306

    Article  CAS  Google Scholar 

  7. Selvan ST, Spatz JP, Klok H-A, Moller M (1998) Gold–polypyrrole core–shell particles in diblock copolymer micelles. Adv Mater 10:132–134

    Article  CAS  Google Scholar 

  8. Gao L, Lv S, Xing S (2012) Facile route to achieve silver@polyaniline nanofibers. Synth Met 162:948–952

    Article  CAS  Google Scholar 

  9. Mallick K, Witcomb MJ, Dinsmore A, Scurrell MS (2005) Fabrication of a metal nanoparticles and polymer nanofibers composite material by an in situ chemical synthetic route. Langmuir 21:7964–7967

    Article  CAS  Google Scholar 

  10. Pillalamarri SK, Blum FD, Tokuhiro AT, Bertino MF (2005) One-pot synthesis of polyaniline–metal nanocomposites. Chem Mater 17:5941–5944

    Article  CAS  Google Scholar 

  11. Han J, Li L, Guo R (2010) Novel approach to controllable synthesis of gold nanoparticles supported on polyaniline nanofibers. Macromolecules 43:10636–10644

    Article  CAS  Google Scholar 

  12. Han J, Liu Y, Guo R (2009) Reactive template method to synthesize gold nanoparticles with controllable size and morphology supported on shells of polymer hollow microspheres and their application for aerobic alcohol oxidation in water. Adv Funct Mater 19:1112–1117

    Article  CAS  Google Scholar 

  13. Han J, Song G, Guo R (2006) A facile solution route for polymeric hollow spheres with controllable size. Adv Mater 18:3140–3144

    Article  CAS  Google Scholar 

  14. Grzeszczuk M, Poks P (2000) The HER performance of the colloidal Pt nanoparticles incorporated in polyaniline. Electrochim Acta 45:4171–4177 and references therein

    Article  CAS  Google Scholar 

  15. Li H, Ha C-S, Kim I (2009) Encapsulation of a single metal nanoparticle with tunable size in a monodisperse polymer microcapsule. Macromol Rapid Commun 30:188–193

    Article  Google Scholar 

  16. Ali A, Kumar V, Sonkawade RG, Shirsat MD, Dhaliwal AS (2013) Two-step electrochemical synthesis of Au nanoparticles decorated polyaniline nanofiber. Vacuum 93:79–83

    Article  CAS  Google Scholar 

  17. Cheng D, Zhou X, Xia H, Chan HZO (2005) Novel method for the preparation of polymeric hollow nanospheres containing silver cores with different sizes. Chem Mater 17:3578–3581

    Article  CAS  Google Scholar 

  18. Pol VG, Grisaru H, Gedanken A (2005) Coating noble metal nanocrystals (Ag, Au, Pd, and Pt) on polystyrene spheres via ultrasound irradiation. Langmuir 21:3635–3640

    Article  CAS  Google Scholar 

  19. Vasilyeva SV, Vorotyntsev MA, Bezverkhyy I, Lesniewska E, Heintz O, Chassagnon R (2008) Synthesis and characterization of palladium nanoparticles/polypyrrole composites. J Phys Chem C 112:19878–19885

    Article  CAS  Google Scholar 

  20. Schirmeisen M, Beck F (1989) Electrocoation of iron and other metals with polypyrrole. J Appl Electrochem 19:401–409

    Article  CAS  Google Scholar 

  21. Grzeszczuk M, Kalenik J, Kępas-Suwara A (2009) Phase boundaries in layer-by-layer electrodeposited polypyrrole resulted from 2D-3D growths of polymer sublayers. J Electroanal Chem 626:47–58

    Article  CAS  Google Scholar 

  22. Grzeszczuk M, Żabińska-Olszak G (1997) Effects of secondary counterions in the electrochemistry of polypyrrole. J Electroanal Chem 427:169–177

    Article  CAS  Google Scholar 

  23. Vanysek P (2004) Handbook of chemistry and physics, 84th edn. CRC PRESS LCC, Boca Raton

    Google Scholar 

  24. Ayad MM, Zaki E (2009) Synthesis and characterization of silver – polypyrrole film composite. Appl Surf Sci 256:787–791

    Article  CAS  Google Scholar 

  25. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  CAS  Google Scholar 

  26. Schlücker S (2014) Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chemie Int Ed 53:4756–4795

    Article  Google Scholar 

  27. Peksa V, Jahn M, Štolcová L, Schulz V, Proška J, Procházka M, Weber K, Cialla-May D, Popp J (2015) Quantitative SERS analysis of azorubine (E 122) in sweet drinks. Anal Chem 87:2840–2844

    Article  CAS  Google Scholar 

  28. Nie S, Emory S (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  Google Scholar 

  29. Leopold N, Lendl B (2003) A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J Phys Chem B 107:5723–5727

    Article  CAS  Google Scholar 

  30. Zhang L (2013) Self-assembly Ag nanoparticle monolayer film as SERS substrate for pesticide detection. Appl Surf Sci 270:292–294

    Article  CAS  Google Scholar 

  31. Ren G, Shang M, Zou H, Wang W (2016) Fe3O4@SiO2-SO3H@PPy@Au spheres: fabrication, characterization and application in SERS. Mater Chem Phys 173:333–339

    Article  CAS  Google Scholar 

  32. Xu P, Mack NH, Jeon S-H, Doorn SK, Han X, Wang H-L (2010) Facile fabrication of homogeneous 3D silver nanostructures on gold-supported polyaniline membranes as promising SERS substrates. Langmuir 26:8882–8886

    Article  CAS  Google Scholar 

  33. Stamplecoskie KG, Sciaiano JC, Tiwari VS, Anis H (2011) Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy. J Phys Chem C 115:1403–1409

    Article  CAS  Google Scholar 

  34. Gan Z, Zhao A, Zhang M, Wang D, Tao W, Guo H, Li D, Li M, Gao Q (2012) A facile strategy for obtaining fresh Ag as SERS active substrates. J Colloid Interface Sci 366:23–27

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the University of Wrocław for the financial support of our investigations through funds 1012/S/WCh/16/10 and 1012/S/WCh/16/15a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Grzeszczuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wójcik, K., Czaja, T., Szostak, R. et al. Silver(I) chloride-polypyrrole composite: electrochemical preparation, characterization, and application as a SERS platform. J Solid State Electrochem 21, 823–832 (2017). https://doi.org/10.1007/s10008-016-3429-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3429-7

Keywords

Navigation