Skip to main content

Advertisement

Log in

Ni0.37Co0.63S2-reduced graphene oxide nanocomposites for highly efficient electrocatalytic oxygen evolution and photocatalytic pollutant degradation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A series of Ni0.37Co0.63S2-reduced graphene oxide nanocomposites with different graphene contents (NCS@rGO-x) has been successfully prepared via a facile one-step hydrothermal method and applied as the catalysts for the oxygen evolution reaction (OER) and degradation of organic pollutants. The XRD and FESEM analyses revealed that the phase structure and morphology of NCS nanoparticles were substantially influenced by the graphene contents. The phase structure of NCS nanoparticles gradually transformed from primary NiCo2S4 to Ni0.37Co0.63S2 and the morphology and size of NCS nanoparticles were found to become more regular and homogeneous with the increase of graphene concentration. On the NCS@rGO-x nanocomposites, the NCS@rGO-2 sample demonstrated the best catalytic activity toward the OER, which delivers a stable current density of 10 mA cm−2 at a small overpotential of ∼276 mV (vs. RHE) with a Tafel slope as low as 48 mV dec−1. Furthermore, the NCS@rGO-2 sample showed the remarkable photocatalytic activity for degradation of methylene blue (MB), which may be attributed to the increased reaction sites and high separation efficiency of photogenerated charge carries due to the electronic interaction between NCS nanoparticles and rGO. All these impressive performances indicate that the NCS@rGO-2 nanocomposite is a promising catalyst in energy and environmental fields.

A series of Ni0.37Co0.63S2-reduced graphene oxide nanocomposites with different graphene contents has been successfully prepared and applied as the catalysts for the oxygen evolution reaction (OER) and degradation of organic pollutants. The NCS@rGO-2 catalyst-modified stainless steel wire mesh (SSWM) electrode delivers a stable current density of 10 mA cm−2 at a small overpotential of ∼276 mV (vs. RHE) with a Tafel slope as low as 48 mV dec−1. At the same time, the NCS@rGO-2 catalyst is also first investigated as an efficient photocatalyst for degradation of MB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Artero V, Chavarot-Kerlidou M, Fontecave M (2011) Angew Chem 50:7238–7266

    Article  CAS  Google Scholar 

  2. Ding J, Yan W, Sun S, Bao J, Gao C (2014) ACS Appl Mater Interfaces 6:12877–12884

    Article  CAS  Google Scholar 

  3. Ganesan P, Prabu M, Sanetuntikul J, Shanmugam S (2015) ACS Catal 5:3625–3637

    Article  CAS  Google Scholar 

  4. Sang Y, Zhao Z, Zhao M, Hao P, Leng Y, Liu H (2015) Adv Mater 27:363–369

    Article  CAS  Google Scholar 

  5. Shen M, Ruan C, Chen Y, Jiang C, Ai K, Lu L (2015) ACS Appl Mater Interfaces 7:1207–1218

    Article  CAS  Google Scholar 

  6. Song F, Hu X (2014) J Am Chem Soc 136:16481–16484

    Article  CAS  Google Scholar 

  7. Trotochaud L, Ranney JK, Williams KN, Boettcher SW (2012) J Am Chem Soc 134:17253–17261

    Article  CAS  Google Scholar 

  8. Xu W, Lu Z, Lei X, Li Y, Sun X (2014) Phys Chem Chem Phys 16:20402–20405

    Article  CAS  Google Scholar 

  9. Tang C, Cheng N, Pu Z, Xing W, Sun X (2015) Angew Chem 54:9351–9355

    Article  CAS  Google Scholar 

  10. Zhang Z, Wang X, Cui G, Zhang A, Zhou X, Xu H, Gu L (2014) Nanoscale 6:3540–3544

    Article  CAS  Google Scholar 

  11. Zhou W, Wu X-J, Cao X, Huang X, Tan C, Tian J, Liu H, Wang J, Zhang H (2013) Energy Environ Sci 6:2921

    Article  CAS  Google Scholar 

  12. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Nat Mater 10:780–786

    Article  CAS  Google Scholar 

  13. Nardi KL, Yang N, Dickens CF, Strickler AL, Bent SF (2015) Adv Energy Mater 5:1500412

    Article  Google Scholar 

  14. Gao MR, Xu YF, Jiang J, Zheng YR, Yu SH (2012) J Am Chem Soc 134:2930–2933

    Article  CAS  Google Scholar 

  15. Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013) J Am Chem Soc 135:8452–8455

    Article  CAS  Google Scholar 

  16. Qian L, Lu Z, Xu T, Wu X, Tian Y, Li Y, Huo Z, Sun X, Duan X (2015) Adv Energy Mater 5:1500245

    Article  Google Scholar 

  17. Rui X, Tan H, Yan Q (2014) Nanoscale 6:9889–9924

    Article  CAS  Google Scholar 

  18. Meng Z-D, Ullah K, Zhu L, Ye S, Oh W-C (2014) Mater Sci Semicond Process 27:173–180

    Article  CAS  Google Scholar 

  19. Peng S, Li L, Tan H, Cai R, Shi W, Li C, Mhaisalkar SG, Srinivasan M, Ramakrishna S, Yan Q (2014) Adv Funct Mater 24:2155–2162

    Article  CAS  Google Scholar 

  20. Liu Y, Cheng H, Lyu M, Fan S, Liu Q, Zhang W, Zhi Y, Wang C, Xiao C, Wei S, Ye B, Xie Y (2014) J Am Chem Soc 136:15670–15675

    Article  CAS  Google Scholar 

  21. Peng S, Li L, Han X, Sun W, Srinivasan M, Mhaisalkar SG, Cheng F, Yan Q, Chen J, Ramakrishna S (2014) Angew Chem 53:12594–12599

    CAS  Google Scholar 

  22. Su Q, Xie J, Zhang J, Zhong Y, Du G, Xu B (2014) ACS Appl Mater Interfaces 6:3016–3022

    Article  CAS  Google Scholar 

  23. Chen C, Ye M, Zhang N, Wen X, Zheng D, Lin C (2015) J Mater Chem A 3:6311–6314

    Article  CAS  Google Scholar 

  24. Du W, Zhu Z, Wang Y, Liu J, Yang W, Qian X, Pang H (2014) RSC Adv 4:6998

    Article  CAS  Google Scholar 

  25. Xiao J, Wan L, Yang S, Xiao F, Wang S (2014) Nano Lett 14:831–838

    Article  CAS  Google Scholar 

  26. Lang X, Hirata A, Fujita T, Chen M (2011) Nat Nano 6:232–236

    Article  CAS  Google Scholar 

  27. Liu Y, Jiang H, Zhu Y, Yang X, Li C (2016) J Mater Chem A 4:1694–1701

    Article  CAS  Google Scholar 

  28. Andersen NI, Serov A, Atanassov P (2015) Appl Catal B 163:623–627

    Article  CAS  Google Scholar 

  29. Chen B, Li R, Ma G, Gou X, Zhu Y, Xia Y (2015) Nanoscale 7:20674–20684

    Article  CAS  Google Scholar 

  30. An X, Shin D, Ocon JD, Lee JK, Son Y-i, Lee J (2014) Chin J Catal 35:891–895

    Article  CAS  Google Scholar 

  31. Yang S, Feng X, Wang L, Tang K, Maier J, Mullen K (2010) Angew Chem 49:4795–4799

    Article  CAS  Google Scholar 

  32. Lee SH, Kim HW, Hwang JO, Lee WJ, Kwon J, Bielawski CW, Ruoff RS, Kim SO (2010) Angew Chem 49:10084–10088

    Article  CAS  Google Scholar 

  33. Wang Z-L, Xu D, Wang H-G, Wu Z, Zhang X-B (2013) ACS Nano 7:2422–2430

    Article  CAS  Google Scholar 

  34. Liu Q, Jin J, Zhang J (2013) ACS Appl Mater Interfaces 5:5002–5008

    Article  CAS  Google Scholar 

  35. Xiao F-X, Miao J, Wang H-Y, Liu B (2013) J Mater Chem A 1:12229

    Article  CAS  Google Scholar 

  36. Hu Y, Gao X, Yu L, Wang Y, Ning J, Xu S, Lou XW (2013) Angew Chem 52:5636–5639

    Article  CAS  Google Scholar 

  37. Zhong J, Zhang Y, Hu C, Hou R, Yin H, Li H, Huo Y (2014) J Mater Chem A 2:19641–19647

    Article  CAS  Google Scholar 

  38. Peng S, Li L, Mhaisalkar SG, Srinivasan M, Ramakrishna S, Yan Q (2014) ChemSusChem 7:2212–2220

    Article  CAS  Google Scholar 

  39. Yu X, Shavel A, An X, Luo Z, Ibanez M, Cabot A (2014) J Am Chem Soc 136:9236–9239

    Article  CAS  Google Scholar 

  40. Li G, Xu C (2015) Carbon 90:44–52

    Article  CAS  Google Scholar 

  41. Li G, Huo H, Xu C (2015) J Mater Chem A 3:4922–4930

    Article  CAS  Google Scholar 

  42. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  43. Parvez K, Wu Z-S, Li R, Liu X, Graf R, Feng X, Müllen K (2014) J Am Chem Soc 136:6083–6091

    Article  CAS  Google Scholar 

  44. Chen G, Liaw SS, Li B, Xu Y, Dunwell M, Deng S, Fan H, Luo H (2014) J Power Sources 251:338–343

    Article  CAS  Google Scholar 

  45. Wang H, Xu Z, Yi H, Wei H, Guo Z, Wang X (2014) Nano Energy 7:86–96

    Article  CAS  Google Scholar 

  46. Lu X, Zhao C (2015) Nat Commun 6:6616

    Article  CAS  Google Scholar 

  47. Feng LL, Yu G, Wu Y, Li GD, Li H, Sun Y, Asefa T, Chen W, Zou X (2015) J Am Chem Soc 137:14023–14026

    Article  CAS  Google Scholar 

  48. Yang J, Shen X, Ji Z, Zhu G (2013) J Mater Sci 48:7913–7919

    Article  CAS  Google Scholar 

  49. Ma Z, Huang X, Dou S, Wu J, Wang S (2014) J Phys Chem C 118:17231–17239

    Article  CAS  Google Scholar 

  50. Cong H-P, Ren X-C, Wang P, Yu S-H (2012) ACS Nano 6:2693–2703

    Article  CAS  Google Scholar 

  51. Carbone M, Gorton L, Antiochia R (2015) Electroanalysis 27:16–31

    Article  CAS  Google Scholar 

  52. Yuan W-J, Li J-C, Chen P, Shen Y-H, Xie A-J (2014). J Nanopart Res 16:2311

  53. Xie J, Liu S, Cao G, Zhu T, Zhao X (2013) Nano Energy 2:49–56

    Article  CAS  Google Scholar 

  54. Zhu L, Susac D, Teo M, Wong K, Wong P, Parsons R, Bizzotto D, Mitchell K, Campbell S (2008) J Catal 258:235–242

    Article  CAS  Google Scholar 

  55. Liu ZQ, Cheng H, Li N, Ma TY, Su YZ (2016). Adv Mater 28:3777–3784

  56. Chen R, Wang H-Y, Miao J-W, Yang H-B, Liu B (2015) Nano Energy 11:333–340

    Article  CAS  Google Scholar 

  57. Yang Y, Zhou M, Guo W-L, Cui X, Li Y-H, Liu F-L, Xiao P, Zhang Y-H (2015) Electrochim Acta 174:246–253

    Article  CAS  Google Scholar 

  58. Tang C, Wang H-S, Wang H-F, Zhang Q, Tian G-L, Nie J-Q, Wei F (2015) Adv Mater 27:4516–4522

    Article  CAS  Google Scholar 

  59. Marschall R (2014) Adv Funct Mater 24:2421–2440

    Article  CAS  Google Scholar 

  60. Kong S, Jin Z, Liu H, Wang Y (2014) J Phys Chem C 118:25355–25364

    Article  CAS  Google Scholar 

  61. Xiao F-X, Miao J, Wang H-Y, Yang H, Chen J, Liu B (2014) Nanoscale 6:6727–6737

    Article  CAS  Google Scholar 

  62. Xian J, Li D, Chen J, Li X, He M, Shao Y, Yu L, Fang J (2014) ACS Appl Mater Interfaces 6:13157–13166

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Natural Science Foundation of China (NNSFC no. 21503102), the Fundamental Research Funds for the Central University (lzujbky-2015-274), and the Science and Technology Program of Gansu Province of China (145RJZA176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cailing Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 4598 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Y., Du, J., Li, H. et al. Ni0.37Co0.63S2-reduced graphene oxide nanocomposites for highly efficient electrocatalytic oxygen evolution and photocatalytic pollutant degradation. J Solid State Electrochem 21, 183–192 (2017). https://doi.org/10.1007/s10008-016-3352-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3352-y

Keywords

Navigation