Skip to main content

Advertisement

Log in

LiMO2@Li2MnO3 positive-electrode material for high energy density lithium ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) is a promising alternative to LiCoO2, as it is less expensive, more structurally stable, and has better safety characteristics. However, its capacity of 155 mAh g−1 is quite low, and cycling at potentials above 4.5 V leads to rapid capacity deterioration. Here, we report a successful synthesis of lithium-rich layered oxides (LLOs) with a core of LiMO2 (R-3m, M = Ni, Co) and a shell of Li2MnO3 (C2/m) (the molar ratio of Ni, Co to Mn is the same as that in NCM 111). The core–shell structure of these LLOs was confirmed by XRD, TEM, and XPS. The Rietveld refinement data showed that these LLOs possess less Li+/Ni2+ cation disorder and stronger M*–O (M* = Mn, Co, Ni) bonds than NCM 111. The core–shell material Li1.15Na0.5(Ni1/3Co1/3)core(Mn1/3)shellO2 can be cycled to a high upper cutoff potential of 4.7 V, delivers a high discharge capacity of 218 mAh g−1 at 20 mA g−1, and retains 90 % of its discharge capacity at 100 mA g−1 after 90 cycles; thus, the use of this material in lithium ion batteries could substantially increase their energy density.

Average voltage vs. number of cycles for the core–shell and pristine materials at 20 mA g−1 for 10 cycles followed by 90 cycles at 100 mA g−1

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–b
Fig. 2
Fig. 3a–b
Fig. 4
Fig. 5a–b
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Santhanam R, Rambabu B (2010) Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J Power Sources 195(17):5442–5451

    Article  CAS  Google Scholar 

  2. Han S, Xia Y, Wei Z, Qiu B, Pan L, Gu Q, Liu Z, Guo Z (2015) A comparative study on the oxidation state of lattice oxygen among Li1.14Ni0.136Co0.136Mn0.544O2, Li2MnO3, LiNi0.5Co0.2Mn0.3O2 and LiCoO2 for the initial charge–discharge. J Mater Chem A 3(22):11930–11939

    Article  CAS  Google Scholar 

  3. Dou S (2013) Review and prospect of layered lithium nickel manganese oxide as cathode materials for Li-ion batteries. J Solid State Electrochem 17(4):911–926

    Article  CAS  Google Scholar 

  4. Kim H-S, Kim K, Moon S-I, Kim I-J, Gu H-B (2008) A study on carbon-coated LiNi1/3Mn1/3Co1/3O2 cathode material for lithium secondary batteries. J Solid State Electrochem 12(7–8):867–872

    Article  CAS  Google Scholar 

  5. Van der Ven A, Aydinol MK, Ceder G (1998) First-principles evidence for stage ordering in LixCoO2. J Electrochem Soc 145(6):2149–2155

    Article  Google Scholar 

  6. Jiang X, Sha Y, Cai R, Shao Z (2015) The solid-state chelation synthesis of LiNi1/3Co1/3Mn1/3O2 as a cathode material for lithium-ion batteries. J Mater Chem A 3(19):10536–10544

    Article  CAS  Google Scholar 

  7. Noh H-J, Youn S, Yoon CS, Sun Y-K (2013) Comparison of the structural and electrochemical properties of layered Li[Ni x Co y Mn z ]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources 233:121–130

  8. Xia H, Lu L, Meng YS, Ceder G (2007) Phase transitions and high-voltage electrochemical behavior of LiCoO2 thin films grown by pulsed laser deposition. J Electrochem Soc 154(4):A337

    Article  CAS  Google Scholar 

  9. Lin B, Wen Z, Wang X, Liu Y (2010) Preparation and characterization of carbon-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode material for lithium-ion batteries. J Solid State Electrochem 14(10):1807–1811

    Article  CAS  Google Scholar 

  10. Yang S, Wang X, Yang X, Liu L, Liu Z, Bai Y, Wang Y (2011) Influence of Li source on tap density and high rate cycling performance of spherical Li[Ni1/3Co1/3Mn1/3]O2 for advanced lithium-ion batteries. J Solid State Electrochem 16(3):1229–1237

    Article  Google Scholar 

  11. Yano A, Aoyama S, Shikano M, Sakaebe H, Tatsumi K, Ogumi Z (2015) Surface structure and high-voltage charge/discharge characteristics of Al-oxide coated LiNi1/3Co1/3Mn1/3O2 cathodes. J Electrochem Soc 162(2):A3137–A3144

    Article  CAS  Google Scholar 

  12. Thackeray MM, Kang S-H, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17(30):3112–3125

    Article  CAS  Google Scholar 

  13. Kang SH, Thackeray MM (2008) Stabilization of xLi2MnO3⋅(1 − x)LiMO2 electrode surfaces (M = Mn, Ni, Co) with mildly acidic, fluorinated solutions. J Electrochem Soc 155(4):A269

  14. Kim S-M, Jin B-S, Lee S-M, Kim H-S (2015) Effects of the fluorine-substitution and acid treatment on the electrochemical performances of 0.3Li2MnO3 · 0.7LiMn0.60Ni0.25Co0.15O2 cathode material for Li-ion battery. Electrochim Acta 171:35–41

    Article  CAS  Google Scholar 

  15. Mezaal MA, Qu L, Li G, Zhang R, Jiang X, Zhang K, Liu W, Lei L (2015) Promoting the cyclic and rate performance of lithium-rich ternary materials via surface modification and lattice expansion. RSC Adv 5(113):93048–93056

    Article  CAS  Google Scholar 

  16. Li J, Xu Y, Li X, Zhang Z (2013) Li2MnO3 stabilized LiNi1/3Co1/3Mn1/3O2 cathode with improved performance for lithium ion batteries. Appl Surf Sci 285:235–240

    Article  CAS  Google Scholar 

  17. Yu H, Zhou H (2013) High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries. J Phys Chem Lett 4(8):1268–1280

    Article  CAS  Google Scholar 

  18. Yang C, Zhang Q, Ding W, Zang J, Lei M, Zheng M, Dong Q (2015) Improving the electrochemical performance of layered lithium-rich cathode materials by fabricating a spinel outer layer with Ni3+. J Mater Chem A 3(14):7554–7559

    Article  CAS  Google Scholar 

  19. Yan J, Liu X, Li B (2014) Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries. RSC Adv 4(108):63268–63284

    Article  CAS  Google Scholar 

  20. Long BR, Croy JR, Dogan F, Suchomel MR, Key B, Wen J, Miller DJ, Thackeray MM, Balasubramanian M (2014) Effect of cooling rates on phase separation in 0.5Li2MnO3·0.5LiCoO2 electrode materials for Li-ion batteries. Chem Mater 26(11):3565–3572

  21. Son MY, Lee JK, Kang YC (2014) Fabrication and electrochemical performance of 0.6Li2MnO3-0.4Li(Ni1/3Co1/3Mn1/3)O2 microspheres by two-step spray-drying process. Sci Rep 4:5752

    Article  CAS  Google Scholar 

  22. Park MS (2014) First-principles study of native point defects in LiNi1/3Co1/3Mn1/3O2 and Li2MnO3. Phys Chem Chem Phys 16(31):16798–16804

    Article  CAS  Google Scholar 

  23. Kumar PS, Sakunthala A, Reddy MV, Shanmugam S, Prabu M (2015) Correlation between the structural, electrical and electrochemical performance of layered Li(Ni0.33Co0.33Mn0.33)O2 for lithium ion battery. J Solid State Electrochem 20(7):1665–1876

  24. Boultif A, Louër D (2004) Powder pattern indexing with the dichotomy method. J Appl Crystallogr 37(5):724–731

    Article  CAS  Google Scholar 

  25. Liu W, Oh P, Liu X, Lee MJ, Cho W, Chae S, Kim Y, Cho J (2015) Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chem Int Ed Engl 54(15):4440–4457

    Article  CAS  Google Scholar 

  26. Oh P, Ko M, Myeong S, Kim Y, Cho J (2014) A novel surface treatment method and new insight into discharge voltage deterioration for high-performance 0.4Li2MnO3-0.6LiNi1/3Co1/3Mn1/3O2 cathode materials. Adv Energ Mater 4(16):1400631

  27. Noh JK, Kim S, Kim H, Choi W, Chang W, Byun D, Cho BW, Chung KY (2014) Mechanochemical synthesis of Li2MnO3 shell/LiMO2 (M = Ni, Co, Mn) core-structured nanocomposites for lithium-ion batteries. Sci Rep 4:4847

    CAS  Google Scholar 

  28. Ryu W-H, Kim D-H, Kang S-H, Kwon H-S (2013) Electrochemical properties of nanosized Li-rich layered oxide as positive electrode materials for Li-ion batteries. RSC Adv 3(22):8527–8534

  29. Yang J, Hou M, Haller S, Wang Y, Wang C, Xia Y (2016) Improving the cycling performance of the layered Ni-rich oxide cathode by introducing low-content Li2MnO3. Electrochim Acta 189:101–110

    Article  CAS  Google Scholar 

  30. Li Q, Li G, Fu C, Luo D, Fan J, Xie D, Li L (2015) Balancing stability and specific energy in Li-rich cathodes for lithium ion batteries: a case study of a novel Li–Mn–Ni–Co oxide. J Mater Chem A 3(19):10592–10602

    Article  CAS  Google Scholar 

  31. Fu F, Deng Y-P, Shen C-H, Xu G-L, Peng X-X, Wang Q, Xu Y-F, Fang J-C, Huang L, Sun S-G (2014) A hierarchical micro/nanostructured 0.5Li2MnO3·0.5LiMn0.4Ni0.3Co0.3O2 material synthesized by solvothermal route as high rate cathode of lithium ion battery. Electrochem Commun 44:54–58

  32. Shen CH, Huang L, Lin Z, Shen SY, Wang Q, Su H, Fu F, Zheng XM (2014) Kinetics and structural changes of Li-rich layered oxide 0.5Li2MnO3.0.5LiNi0.292Co0.375Mn0.333O2 material investigated by a novel technique combining in situ XRD and a multipotential step. ACS Appl Mater Interfaces 6(15):13271–13279

    Article  CAS  Google Scholar 

  33. Li W, Reimers J, Dahn J (1992) Crystal structure of Li x Ni2−x O2 and a lattice-gas model for the order–disorder transition. Phys Rev B 46(6):3236–3246

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixu Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezaal, M.A., Qu, L., Li, G. et al. LiMO2@Li2MnO3 positive-electrode material for high energy density lithium ion batteries. J Solid State Electrochem 21, 145–152 (2017). https://doi.org/10.1007/s10008-016-3345-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3345-x

Keywords

Navigation