Skip to main content
Log in

Electrochemical behavior of lithium-rich layered oxide Li[Li0.23Ni0.15Mn0.62]O2 cathode material for lithium-ion battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Lithium-rich layered oxide Li[Li0.23Ni0.15Mn0.62]O2, which also can be written as 0.6Li2MnO3·0.4LiNi0.5Mn0.5O2 or 0.9Li[Li1/3Mn2/3]O2·0.4LiNi0.5Mn0.5O2, is synthesized using a solid-state reaction method. Its crystal structure and electrochemical behavior as the cathode material in lithium-ion batteries are studied. A reaction mechanism is proposed to interpret its unique electrochemical behavior shown in the first charge–discharge cycle. It includes four reactions: (1) LiNi0.5Mn0.5O2 → Li+ + Ni0.5Mn0.5O2 + e, (2) Li[Li1/3Mn2/3]O2 → Li+ + [Li1/3Mn2/3]O2 + e, (3) [Li1/3Mn2/3]O2 → 1/3 Li+ + 2/3 MnO2 + 2/3 O· + e, and (4) Li+ + Ni0.2Mn0.8O2 + e → LiNi0.2Mn0.8O2. The extraction of oxygen atoms (O·) in the reaction (3) results in the crystal structure rearrangement. Based on this hypothesis, it is found that the expected capacity of activated lithium-rich layered oxide xLi2MnO3·(1 − x)LiNi0.5Mn0.5O2 (0 ≤ x ≤ 1) increases from 230 to 280 mAh g−1 with increasing x value. Li[Li0.23Ni0.15Mn0.62]O2 has an expected total first charge capacity of 396 mAh g−1, but its expected capacity is only 247 mAh g−1 due to an initial capacity loss caused by the oxygen loss. Experimentally, within a charge–discharge voltage window from 2.0 to 4.8 V, Li[Li0.23Ni0.15Mn0.62]O2 delivers a charge capacity of 310 mAh g−1 and a discharge capacity of 215 mAh g−1, respectively, at 40 mA g−1 during the first cycle. The electrochemical kinetic behavior of Li[Li0.23Ni0.15Mn0.62]O2 is controlled by the charge-transfer process rather than by Li+ diffusion or blockage of solid-electrolyte interphase (SEI) layers at the end of Li+ extraction in the first charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Goodenough JB (2007) Cathode materials: a personal perspective. J Power Sources 174:996–1000

    Article  CAS  Google Scholar 

  2. Brodd RJ, Bullock KR, Leising RA, Middaugh RL, Miller JR, Takeuchi E (2004) Batteries, 1977 to 2002. J Electrochem Soc 151:K1–K11

    Article  CAS  Google Scholar 

  3. Cho J, Park B (2001) Preparation and electrochemical thermal properties of LiNi0.74Co0.26O2 cathode material. J Power Sources 92:35–39

    Article  CAS  Google Scholar 

  4. Yabuuchi N, Ohzuku T (2003) Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J Power Sources 119–121:171–174

    Article  Google Scholar 

  5. Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17:3112–3125

    Article  CAS  Google Scholar 

  6. Lu Z, MacNeil DD, Dahn JR (2001) Layered cathode materials Li[Ni x Li1/3−2x/3]Mn2/3−x/3O2 for lithium-ion batteries. Electrochem Solid-State Lett 4:A191–A194

    Article  CAS  Google Scholar 

  7. Kang SH, Kempgens P, Greenbaum S, Kropf AJ, Amine K, Thackeray MM (2007) Interpreting the structural and electrochemical complexity of 0.5Li2MnO3 · 0.5LiMO2 electrodes for lithium batteries (M = Mn0.5 − xNi0.5 − xCo2x, 0x0.5). J Mater Chem 17:2069–2077

    Article  CAS  Google Scholar 

  8. Johnson CS, Li N, Lefief C, Vaughey JT, Thackeray MM (2008) Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3 · (1 − x)LiMn0.333Ni0.333Co0.333O2 (0x0.7). Chem Mater 20:6095–6106

    Article  CAS  Google Scholar 

  9. Yabuuchi N, Yoshii K, Myung ST, Nakai I, Komaba S (2011) Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3–LiCo1/3Ni1/3Mn1/3O2. J Am Chem Soc 133:4404–4419

    Article  CAS  Google Scholar 

  10. Kim S, Kim C, Jhon YI, Noh JK, Vemuri SH, Smith R, Chung KY, Jhon MS, Cho BW (2012) Synthesis of layered–layered 0.5Li2MnO3 · 0.5LiCoO2 nanocomposite electrode materials by the mechanochemical process and first principles study. J Mater Chem 22:25418–25426

    Article  CAS  Google Scholar 

  11. Neudecker BJ, Zuhr RA, Kwak BS, Bates JB, Robertson JD (1998) Lithium manganese nickel oxides Li x (Mn y Ni1–y )2–x O2 I. Synthesie and characterization of thin films and bulk phases. J Electrochem Sci 145:4148–4159

    Article  CAS  Google Scholar 

  12. Kim D, Gim J, Lim J, Park S, Kim J (2010) Synthesis of xLi2MnO3 · (1–x)LiMO2 (M = Cr, Mn, Co, Ni) nanocomposites and their electrochemical properties. Mater Res Bull 45:252–255

    Article  CAS  Google Scholar 

  13. Jarvis KA, Deng Z, Allard LF, Manthiram A, Ferreira PJ (2011) Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Chem Mater 23:3614–3621

    Article  CAS  Google Scholar 

  14. Wang CC, Jarvis KA, Ferreira PJ, Manthiram A (2013) Effect of synthesis conditions on the first charge and reversible capacities of lithium-rich layered oxide cathodes. Chem Mater 25:3267–3275

  15. Lu Z, Dahn JR (2002) Understanding the anomalous capacity of Li/Li[Ni x Li1/3−2x/3Mn2/3−x/3]O2 cells using in situ X-ray diffraction and electrochemical studies. J Electrochem Soc 149:A815–A822

    Article  CAS  Google Scholar 

  16. Armstrong AR, Holzapfel M, Novak P, Johnson CS, Kang SH, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc 128:8694–8698

    Article  CAS  Google Scholar 

  17. Jiang M, Key B, Meng YS, Grey CP (2009) Electrochemical and structural study of the layered, “Li-excess” lithium-ion battery electrode material Li[Li1/9Ni1/3Mn5/9]O2. Chem Mater 21:2733–2745

    Article  CAS  Google Scholar 

  18. Boulineau A, Simonin L, Colin JF, Bourbon C, Patoux S (2013) First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries. Nano Lett 13:3857–3863

    Article  CAS  Google Scholar 

  19. Zhang J, Guo X, Yao S, Zhu W, Qiu X (2013) Tailored synthesis of Ni0.25Mn0.75CO3 spherical precursors for high capacity Li-rich cathode materials via a urea-based precipitation method. J Power Sources 238:245–250

    Article  CAS  Google Scholar 

  20. Wang ZH, Yuan LX, Zhang WX, Huang YH (2012) LiFe0.8Mn0.2PO4/C cathode material with high energy density for lithium-ion batteries. J Alloys Compd 532:25–30

    Article  CAS  Google Scholar 

  21. Ohzuku T, Nagayama M, Tsuji K, Ariyoshi K (2011) High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: toward rechargeable capacity more than 300 mA h g−1. J Mater Chem 21:10179–10188

    Article  CAS  Google Scholar 

  22. Kang SH, Thackeray MM (2009) Enhancing the rate capability of high capacity xLi2MnO3 · (1 − x) LiMO2 (M = Mn, Ni, Co) electrodes by Li–Ni–PO4 treatment. Electrochem Commun 11:748–751

    Article  CAS  Google Scholar 

  23. Abraham DP, Twesten RD, Balasubramanian M, Petrov I, McBreen J, Amine K (2002) Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells. Electrochem Commun 4:620–625

    Article  CAS  Google Scholar 

  24. Lu Z, Beaulieu LY, Donaberger RA, Thomas CL, Dahn JR (2002) Synthesis, structure, and electrochemical behavior of Li[Ni x Li1/3−2x/3Mn2/3−x/3]O2. J Electrochem Soc 149:A778–A791

    Article  CAS  Google Scholar 

  25. Yang L, Cheng X, Ma Y, Lou S, Cui Y, Guan T, Yin G (2013) Changing of SEI film and electrochemical properties about MCMB electrodes during long-term charge/discharge cycles. J Electrochem Soc 160:A2093–A2099

    Article  CAS  Google Scholar 

  26. Cherkashinin G, Nikolowski K, Ehrenberg H, Jacke S, Dimesso L, Jaegermann W (2012) The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte–cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation. Phys Chem Chem Phys 14:12321–12331

    Article  CAS  Google Scholar 

  27. Lim J, Moon J, Gim J, Kim S, Kim K, Song J, Kang J, Im WB, Kim J (2012) Fully activated Li2MnO3 nanoparticles by oxidation reaction. J Mater Chem 2012(22):11772–11777

    Article  Google Scholar 

  28. Amalraj SF, Sharon D, Talianker M, Julien CM, Burlaka L, Lavi R, Zhecheva E, Markovsky B, Zinigrad E, Kovacheva D, Stoyanova R, Aurbach D (2013) Study of the nanosized Li2MnO3: electrochemical behavior, structure, magnetic properties, and vibrational modes. Electrochim Acta 97:259–270

    Article  CAS  Google Scholar 

  29. Robertson AD, Bruce PG (2003) Mechanism of electrochemical activity in Li2MnO3. Chem Mater 15:1984–1992

    Article  CAS  Google Scholar 

  30. Li D, Muta T, Noguchi H (2004) Electrochemical characteristics of LiNi0.5Mn0.5−x Ti x O2 prepared by solid state method. J Power Sources 135:262–266

    Article  CAS  Google Scholar 

  31. Manikandan P, Ananth MV, Kumar TP, Raju M, Periasamy P, Manimaran K (2011) Solution combustion synthesis of layered LiNi0.5Mn0.5O2 and its characterization as cathode material for lithium-ion cells. J Power Sources 196:10148–10155

    Article  CAS  Google Scholar 

  32. Liu Y, Cao F, Chen B, Zhao X, Suib SL, Chan HLW, Yuan J (2012) High performance of LiNi0.5Mn0.5O2 positive electrode boosted by ordered three-dimensional nanostructures. J Power Sources 206:230–235

    Article  CAS  Google Scholar 

  33. Kumar PS, Sakunthala A, Prabub M, Reddy MV, Joshi R (2014) Structure and electrical properties of lithium nickel manganese oxide (LiNi0.5Mn0.5O2) prepared by P123 assisted hydrothermal route. Solid State Ionics 267:1–8

    Article  Google Scholar 

  34. Tan S, Zhang Z, Li Y, Li Y, Zheng J, Zhou Z, Yang Y (2013) Tris(hexafluoro-iso-propyl)phosphate as an SEI-forming additive on improving the electrochemical performance of the Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode material. J Electrochem Soc 160:A285–A292

    Article  CAS  Google Scholar 

  35. Kang YS, Yoon T, Lee SS, Mun J, Park MS, Park JH, Doo SG, Song IY, Oh SM (2013) 1,3,5-Trihydroxybenzene as a film-forming additive for high-voltage positive electrode. Electrochem Commun 27:26–28

    Article  Google Scholar 

  36. Li Z, Du F, Bie X, Zhang D, Cai Y, Cui X, Wang C, Chen G, Wei Y (2010) Electrochemical kinetics of the Li[Li0.23Co0.3Mn0.47]O2 cathode material studied by GITT and EIS. J Phys Chem C 114:22751–22757

    Article  CAS  Google Scholar 

  37. Amalraj F, Kovacheva D, Talianker M, Zeiri L, Grinblat J, Leifer N, Goobes G, Markovsky B, Aurbach D (2010) Synthesis of integrated cathode materials xLi2MnO3 · xLi2MnO3 · (1 − x)LiMn1/3Ni1/3Co1/3O2 (x = 0.3, 0.5, 0.7) and studies of their electrochemical behavior. J Electrochem Soc 157:A1121–A1130

    Article  CAS  Google Scholar 

  38. Gao P, Yang G, Liu H, Wang L, Zhou H (2012) Lithium diffusion behavior and improved high rate capacity of LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium batteries. Solid State Ionics 207:50–56

    Article  CAS  Google Scholar 

  39. Jafta CJ, Ozoemena KI, Mathe MK, Roos WD (2012) Synthesis, characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery. Electrochim Acta 85:411–422

    Article  CAS  Google Scholar 

  40. Yan SY, Wang CY, Gu RM, Sun S, Li MW (2015) Synergetic Fe substitution and carbon connection in LiMn1–x Fe x PO4/C cathode materials for enhanced electrochemical performances. J Alloys Compd 628:471–479

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is financially supported by the National Nature Science Foundation of China (NSFC 50902102) and Tianjin Municipal Natural Science Foundation (No. 11JCYBJC07500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Wei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, RM., Yan, SY., Sun, S. et al. Electrochemical behavior of lithium-rich layered oxide Li[Li0.23Ni0.15Mn0.62]O2 cathode material for lithium-ion battery. J Solid State Electrochem 19, 1659–1669 (2015). https://doi.org/10.1007/s10008-015-2796-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2796-9

Keywords

Navigation