Skip to main content
Log in

The influence of polyacid nature on poly(3,4-ethylenedioxythiophene) electrosynthesis and its spectroelectrochemical properties

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The present study is aimed to elucidate main structural features of polymeric sulfonic acids (the rigidity of main chain, the distance between sulfonic groups on the chain, the hydrophobicity of main chain or side fragments) on the course of 3,4-ethylenedioxythiophene (EDOT) electropolymerization and electronic and chemical structure of the poly(3,4-ethylenedioxythiophene) (PEDOT) films obtained. The films were prepared by electrochemical polymerization in cyclic voltammetry, potentiostatic, and galvanostatic regimes in aqueous solutions of different polyacids in the absence of supporting electrolyte. The effect of the chemical structure of polyacid on the course and rate of PEDOT synthesis was traced by electrochemical and in situ UV-Vis spectroscopic methods. It was shown that the highest rate of EDOT electropolymerization is achieved in the presence of flexible-chain polyacid having hydrophobic fragments (groups) in its structure, followed by hydrophobic rigid-chain polyacids. The lowest rate was observed in the presence of hydrophilic flexible-chain polyacid. The electronic and chemical structure of the PEDOT films obtained was studied by in situ UV-Vis-NIR and Raman spectroelectrochemistry. The films prepared in the presence of rigid-chain polyacids at high anodic potentials demonstrate decreased content of bipolaronic fragments in their structure, while PEDOT complexes with flexible-chain polyacids are very much like conventional polymer prepared in non-aqueous medium. The results are discussed in terms of conformational state (ability to form coils and thus concentrate the monomer) of different polyacids in aqueous solution and hydrophobic interactions between the polyacids and EDOT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kirchmeyer S, Reuter K (2005) Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J Mater Chem 15:2077–2088

    Article  CAS  Google Scholar 

  2. Inzelt G (2012) Conducting polymers: a new era of electrochemistry. In: Scholz F (ed) Monographs in electrochemistry, 2nd edn. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  3. Sankaran B, Reynolds JR (1997) High-contrast electrochromic polymers from alkyl-derivatized poly(3,4-ethylenedioxythiophenes). Macromolecules 30:2582–2588

    Article  CAS  Google Scholar 

  4. Kvarnstroèm C, Neugebauer H, Blomquist S, Ahonen HJ, Kankare J, Ivaska A (1999) In situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene). Electrochim Acta 44:2739–2750

    Article  Google Scholar 

  5. Łapkowski M, Proń A (2000) Electrochemical oxidation of poly-(3,4-ethylenedioxythiophene)—“in situ” conductivity and spectroscopic investigations. Synth Met 110:79–83

    Article  Google Scholar 

  6. Alpatova NM, Rotenberg ZA, Ovsyannikova EV, Topolev VV, Kirchmeyer S, Jonas F (2004) Poly(3,4-ethylenedioxythiophene) heterogeneity: a differential cyclic voltabsorptometry study. Russ J Electrochem 40:917–923

    Article  CAS  Google Scholar 

  7. Tolstopyatova EG, Pogulaichenko NA, Eliseeva SN, Kondratiev VV (2009) Spectroelectrochemical study of poly-3,4-ethylenedioxythiophene films in the presence of different supporting electrolytes. Russ J Electrochem 45:252–262

    Article  CAS  Google Scholar 

  8. Zotti G, Zecchin S, Schiavon G, Louwet F, Groenendaal L, Crispin X, Osikowicz W, Salaneck W, Fahlman M (2003) Electrochemical and XPS studies toward the role of monomeric and polymeric sulfonate counterions in the synthesis, composition, and properties of poly(3,4-ethylenedioxythiophene). Macromolecules 36:3337

    Article  CAS  Google Scholar 

  9. Sonmez G, Schottland P, Reynolds JR (2005) PEDOT/PAMPS: an electrically conductive polymer composite with electrochromic and cation exchange properties. Synth Met 155:130–137

    Article  CAS  Google Scholar 

  10. Bobacka J, Lewenstam A, Ivaska A (2000) Electrochemical impedance spectroscopy of oxidized poly(3,4-ethylenedioxythiophene) film electrodes in aqueous solutions. J Electroanal Chem 489:17–27

    Article  CAS  Google Scholar 

  11. Gustafsson J, Liedberg B, Inganas O (1994) In situ spectroscopic investigations of electrochromism and ion transport in a poly (3,4-ethylenedioxythiophene) electrode in a solid state electrochemical cell. Solid State Ionics 69:145–152

    Article  CAS  Google Scholar 

  12. Nasybulin E, Wei S, Kymissis I, Levon K (2012) Effect of solubilizing agent on properties of poly(3,4-ethylenedioxythiophene) (PEDOT) electrodeposited from aqueous solution. Electrochim Acta 78:638–643

    Article  CAS  Google Scholar 

  13. Tamburri E, Orlanducci S, Toschi F, Terranova ML, Passeri D (2009) Growth mechanisms, morphology, and electroactivity of PEDOT layers produced by electrochemical routes in aqueous medium. Synth Met 159:406–414

    Article  CAS  Google Scholar 

  14. Lyutov V, Efimov I, Bund A, Tsakova V (2014) Electrochemical polymerization of 3,4-ethylenedioxythiophene in the presence of dodecylsulfate and polysulfonic anions—an acoustic impedance study. Electrochim Acta 122:21–27

    Article  CAS  Google Scholar 

  15. Tsakova V, Winkels S, Schultze JW (2000) Anodic polymerization of 3,4-ethylenedioxythiophene from aqueous microemulsions. Electrochim Acta 46:759–768

    Article  CAS  Google Scholar 

  16. Sakmeche N, Aeiyach S, Aaron J, Jouini M, Lacroix JC, Lacaze P (1999) Improvement of the electrosynthesis and physicochemical properties of poly(3,4-ethylenedioxythiophene) using a sodium dodecyl sulfate micellar aqueous medium. Langmuir 15:2566–2574

    Article  CAS  Google Scholar 

  17. Pigani L, Heras A, Colina A, Seeber R, Loґpez-Palacios J (2004) Electropolymerisation of 3,4-ethylenedioxythiophene in aqueous solutions. Electrochem Commun 6:1192–1198

    Article  CAS  Google Scholar 

  18. Du X, Wang Z (2003) Effects of polymerization potential on the properties of electrosynthesized PEDOT films. Electrochim Acta 48:1713–1717

    Article  CAS  Google Scholar 

  19. Kirsh YE, Fedotov YA, Iudina NN, Katalevskii EE (1990) About conformation state of macromolecules of sulfo-containing polyamides on the base of iso- and terephthalic acids in aqueous solution. Polym Sci Ser B 32:403–404

    CAS  Google Scholar 

  20. Kirsh YE, Fedotov YA, Iudina NA, Artemov DY, Yanul NA, Nekrasova TN (1991) On polyelectrolyte properties of sulfo-containing polyamides on the base of iso- and terephthalic acids in aqueous solution. Polym Sci Ser A 33:1127–1133

    CAS  Google Scholar 

  21. Randriamahazaka H, Noël V, Chevrot C (1999) Nucleation and growth of poly(3,4-ethylenedioxythiophene) in acetonitrile on platinum under potentiostatic conditions. J Electroanal Chem 472:103–111

    Article  Google Scholar 

  22. Gribkova OL, Omelchenko OD, Nekrasov AA, Ivanov VF, Vannikov AV (2015) On the nature of influence of polyelectrolyte molecular weight on aniline electropolymerization. J Solid State Electrochem 19:2643–2652

    Article  CAS  Google Scholar 

  23. Gribkova OL, Nekrasov AA, Ivanov VF, Zolotorevsky VI, Vannikov AV (2014) Templating effect of polymeric sulfonic acids on electropolymerization of aniline. Electrochim Acta 122:150–158

    Article  CAS  Google Scholar 

  24. Tan JS, Marcus PR (1976) Ion binding in sulfonate-containing polyelectrolytes. J Polym Sci: Polym Phys Ed 14:239–250

    CAS  Google Scholar 

  25. Sarkar N, Kershner D (1996) Rigid rod water-soluble polymers. J Appl Polym Sci 62:393–408

    Article  CAS  Google Scholar 

  26. Wu ZL, Arifuzzaman M, Kurokawa T, Le K, Hu J, Sun TL, et al. (2013) Supramolecular assemblies of a semirigid polyanion in aqueous solutions. Macromolecules 46:3581–3586

    Article  CAS  Google Scholar 

  27. Gao J, Wang Y, Norder B, Garcia SJ, Picken SJ, Madsen LA, Dingemans TJ (2015) Water and sodium transport and liquid crystalline alignment in a sulfonated aramid membrane. J Membr Sci 489:194–203

    Article  CAS  Google Scholar 

  28. Viale S, Li N, Schotman AHM, Best AS, Picken SJ (2005) Synthesis and formation of a supramolecular nematic liquid crystal in poly(p-phenylene-sulfoterephthalamide)-H2O. Macromolecules 38:3647–3652

    Article  CAS  Google Scholar 

  29. Nekrasov AA, Gribkova OL, Ivanov VF, Vannikov AV (2012) The spectroelectrochemical behavior of films of polyaniline interpolymer complexes in the near infrared spectral region. Russ J Electrochem 48:197–204

    Article  CAS  Google Scholar 

  30. Yamato H, Kai K, Ohwa M, Wernet W, Matsumura M (1997) Mechanical, electrochemical and optical properties of poly (3, 4-ethylenedioxythiophene)/sulfated poly (β-hydroxyethers) composite films. Electrochim Acta 42:2523

    Article  Google Scholar 

  31. Im SG, Gleason KK (2007) Systematic control of the electrical conductivity of poly(3,4-ethylenedioxythiophene) via oxidative chemical vapor deposition. Macromolecules 40:6552–6556

    Article  CAS  Google Scholar 

  32. Correia JP, Abrantes LM (2004) Ellipsometry to access structural information of electroactive polymer films. Mater Sci Forum 455-456:657–660

    Article  CAS  Google Scholar 

  33. O’Neil KD, Shaw B, Semenikhin OA (2007) On the origin of mesoscopic inhomogeneity of conducting polymers. J Phys Chem B 111:9253–9269

    Article  Google Scholar 

  34. Garreau S, Louarn G, Froyer G, Lapkowski M, Chauvet O (2001) Spectroelectrochemical studies of the C14-alkyl derivative of poly(3,4-ethylenedioxythiophene) (PEDT). Electrochim Acta 46:1207–1214

    Article  CAS  Google Scholar 

  35. Mazeikiene R, Tomkute V, Kuodis Z, Niaura G, Malinauskas A (2007) Raman spectroelectrochemical study of polyaniline and sulfonated polyaniline in solutions of different pH. Vib Spectrosc 44:201–208

    Article  CAS  Google Scholar 

  36. Kalba M, Kavan L, Zukalova M, Dunsch L (2007) An in situ Raman spectroelectrochemical study of the controlled doping of single walled carbon nanotubes in a conducting polymer matrix. Carbon 45:1463–1470

    Article  Google Scholar 

  37. Stromberg C, Tsakova V, Schultze JW (2003) Composition of the microemulsion and its influence on the polymerisation and redox activation of PEDOT. J Electroanal Chem 547:125–133

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Science Foundation (grant no. 15-13-00170). O. Iakobson is grateful to the Grant Council of the President of the Russian Federation for the financial support (SP-2994.2015.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. L. Gribkova.

Electronic supplementary material

ESM 1

(DOC 811 kb)

ESM 2

(DOC 160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gribkova, O.L., Iakobson, O.D., Nekrasov, A.A. et al. The influence of polyacid nature on poly(3,4-ethylenedioxythiophene) electrosynthesis and its spectroelectrochemical properties. J Solid State Electrochem 20, 2991–3001 (2016). https://doi.org/10.1007/s10008-016-3252-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3252-1

Keywords

Navigation