Skip to main content
Log in

Thermodynamic aspects of capillarity and electrocapillarity of solid interfaces

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the previous paper (Gutman, JOSSEC 18:3217–3237, 2014), we have shown that the main problem in capillarity and electrocapillarity of solid surfaces is the lack of clarity in determining the surface stress and basic equations. Now, we continue the survey of efforts to solve this problem and show origins of erroneous results, accenting some important items: comparative analysis of Gibbs and Guggenheim approaches in surface thermodynamics (a geometrical dividing surface and finite-thickness surface layer, respectively), transformation of fundamental equations on per-unit-area basis to obtain Gibbs adsorption equation for finite-thickness surface layer, different attempts to derive the thermodynamic definition of “surface stress” in frames of Gibbs’ theory (including Shuttleworth’s approach), atomistic calculations of surface stress, surface stress in rational continuum mechanics, “modifications” of Gibbs–Duhem relations made for solid interface, and Maxwell relations in capillarity and electrocapillarity of solid interface. It is shown that the erroneous Shuttleworth’s approach is present in an explicit or implicit form in all efforts to introduce the surface stress in frames of Gibbsian theory (although Gibbs did not introduce surface stress). Therefore, “modernizations” or “generalizations” of the Gibbs–Duhem relation, the Gibbs adsorption equation, and the Lippmann equation to adopt them for a solid surface are unnatural and not necessary. Therefore, we recommend withdrawing the Shuttleworth equation and its consequences from circulation, including the IUPAC Recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gibbs JW (1961) Thermodynamics, vol I. Dover, New York

    Google Scholar 

  2. Gutman EM (2014) J Solid State Electrochem 18:3217

    Article  CAS  Google Scholar 

  3. Lippmann G (1875) Ann Chim Phys 5:494

    Google Scholar 

  4. Shuttleworth R (1950) Proc R Soc A63:444

    Google Scholar 

  5. Gutman EM (1995) J Phys Condens Matter 7:L663

    Article  CAS  Google Scholar 

  6. Frolov T, Mishin Y (2015) J Chem Rhys:143(4). doi:10.1063/1.4927414

  7. Herring C (1952) The use of classical macroscopic concepts in surface-energy problems. In: Gomer R, Smith CS (eds) Structure and properties of solid surfaces. University Press, Chicago, p. 14

    Google Scholar 

  8. Eriksson JC (1969) Surf Sci 14:221

    Article  CAS  Google Scholar 

  9. Couchman PR, Everet DH, Jesser WA (1975) Colloid Interface Sci 52:410

    Article  Google Scholar 

  10. Couchman PR, Davidson CR (1977) J Electroanal Chem 85:407

    Article  CAS  Google Scholar 

  11. Couchman PR, Linford RG (1980) Electroanal Chem 115:143

    Article  CAS  Google Scholar 

  12. Gokhshtein AY (1976) Surface tension of solids and adsorption. Nauka, Moscow (in Russian)

    Google Scholar 

  13. Cahn JW (1979) Thermodynamics of solid and fluid surfaces, in: W. C. Johnson and J. M. Blackely (Eds.), Interfacial Segregation Chap. 1, American Society for Metals, Metals Park, Ohaio, p. 3

  14. Rusanov AI (2005) Surf Sci Rep 58:111

    Article  CAS  Google Scholar 

  15. Gutman EM (2010) J Phys Condens Matter 22:428001–428002

    Article  CAS  Google Scholar 

  16. Gutman EM (2011) Surf Sci 605:644

    Article  CAS  Google Scholar 

  17. Gutman EM (2011) Surf Sci 605:1872

    Article  CAS  Google Scholar 

  18. Gutman EM (2011) Surf Sci 605:1923

    Article  CAS  Google Scholar 

  19. Gutman EM (2012) Surf Sci 606:772

    Article  CAS  Google Scholar 

  20. Gutman EM (2012) J Solid State Electrochem 16:2283

    Article  CAS  Google Scholar 

  21. Gutman EM (2014) Theoretical problems in solid electrocapillarity. J Solid State Electrochem 18:3217–3237

  22. Deng O, Smetanin M, Weissmüller J (2014) J Catal 309:351

    Article  CAS  Google Scholar 

  23. Smetanin M, Deng Q, Weissmüller J (2011) J Phys Chem Chem Phys 13:17313

    Article  CAS  Google Scholar 

  24. Deng Q, Gosslar D-H, Smetanin M, Weissmüller J (2015) Phys Chem Chem Phys 17:11725

    Article  CAS  Google Scholar 

  25. Ip SW, Toguri JM (1994) J Mater Sci 29:688

    Article  CAS  Google Scholar 

  26. Gurtin ME, Weissmuller J, Larche F (1998) Phil Mag A78(5):1093

    Article  Google Scholar 

  27. Bikerman JJ (1965) Phys Status Solidi 10:3

    Article  CAS  Google Scholar 

  28. Flood EA (1967) The solid-gas interface (Ed. E.A. Flood) vol.1 Dekker, New York

  29. Guggenheim EA (1967) Thermodynamics. North-Holland Publishing Co., Amsterdam

    Book  Google Scholar 

  30. Landau LD, Lifshitz EM (1981) Theory of Elasticity. Oxford-Pergamon, London

    Google Scholar 

  31. Guggenheim EA (1940) Trans Faraday Soc 36:398

    Google Scholar 

  32. Ramanujan RV (2003) Mater Sci Engng A359:350

    Article  CAS  Google Scholar 

  33. Gutman EM (1995) J Mater Sci Lett 14:1761

    Article  CAS  Google Scholar 

  34. Callen HB (1961) Thermodynamics. John Wiley & Sons, Inc., New York

    Google Scholar 

  35. Láng G, Heusler KE (1999) J Electroanal Chem 472:168

    Article  Google Scholar 

  36. Bottomley DJ, Ogino T (2001) Phys Rev B63:16541

    Google Scholar 

  37. Bottomley DJ, Makkonen L, Kolari K (2009) Surf Sci 603:97

    Article  CAS  Google Scholar 

  38. Marichev VA (2010) Adv Colloid Interf Sci 157:34

    Article  CAS  Google Scholar 

  39. Olivier S, Tréglia G, Saúl A, Willaime F (2006) Surf Sci 600:5131

    Article  CAS  Google Scholar 

  40. Olivier S, Saúl A, Tréglia G (2003) Appl Surf Sci 212-213:866

    Article  CAS  Google Scholar 

  41. Müller P, Saúl A (2004) Surf Sci Rep 54:157

    Article  Google Scholar 

  42. Kramer D, Weissmüller J (2007) Surf Sci 601:3042

    Article  CAS  Google Scholar 

  43. Ibach H (1997) Surf Sci Reps 29:193

    CAS  Google Scholar 

  44. Frolov T, Mishin Y (2009) Phys Rev B 79:045430

    Article  Google Scholar 

  45. Ibach H (1999) Surf Sci Rep 35:71

    Article  CAS  Google Scholar 

  46. Shenoy VB (2005) Phys Rev B 71:094104

    Article  Google Scholar 

  47. Price CW, Hirth JP (1976) Surf Sci 57:509

    Article  CAS  Google Scholar 

  48. Needs RJ (1987) Phys Rev Lett 58:3

    Article  Google Scholar 

  49. Mansfield M, Needs RJ (1991) Phys Rev B 43(11):8829

    Article  CAS  Google Scholar 

  50. Needs RJ, Goodfrey MJ, Mansfield M (1991) Surf Sci 242:215

    Article  CAS  Google Scholar 

  51. Needs RJ, Goodfrey MJ (1990) Phys Rev B 42(17):10933

    Article  Google Scholar 

  52. Needs RJ, Goodfrey MJ (1987) Phys Scr T19:391

    Article  Google Scholar 

  53. Needs RJ, Rajagopal G (1997) Surf Sci 372:179

    Article  CAS  Google Scholar 

  54. Frolov T, Mishin Y (2010) Phys Rev B 82:174114

    Article  Google Scholar 

  55. Nielsen OH, Martin RM (1983) Phys Rev Lett 50(9):697

    Article  CAS  Google Scholar 

  56. Nielsen OH, Martin RM (1985) Phys Rev B 32:3792

    Article  CAS  Google Scholar 

  57. Filippetti A (2000) Phys Rev B 61(12):8433

    Article  CAS  Google Scholar 

  58. Xiao H, Long C, Tian X, Chen H (2016) Surf Sci 649:1

    Article  CAS  Google Scholar 

  59. Frolov T, Mishin Y (2012) Phys Rev B 85:224106

    Article  Google Scholar 

  60. Eriksson JC, Rusanov AI (2010) Surf Sci 604:1062

    Article  CAS  Google Scholar 

  61. Bockris JO’M, Reddy AKN (1973) Modern electrochemistry, vol II. Plenum Press, New York

    Book  Google Scholar 

  62. Sanfeld A, Steinchen A (2000) Surf Sci 463:157

    Article  CAS  Google Scholar 

  63. Trasatti S, Parsons R (1986) Pure Appl Chem 58(3):437

    Article  CAS  Google Scholar 

  64. Bower AF (2010) Applied mechanics of solids. CRC Press, Florida, p. 13

    Google Scholar 

  65. Truesdell C (1977) A first course in rational continuum mechanics, volume 1, General Concepts. Academic Presss, New York

    Google Scholar 

  66. Fischer FD, Waitz T, Vollath D, Simha NK (2008) Progr Mat Sci 53:481

    Article  CAS  Google Scholar 

  67. Cammarata RC (2009) Generalized thermodynamics of surfaces with applications to small solid systems. In: Spaepen F, Eherenreich H (eds) Solid state physics, vol 61. Academic Press, London, pp. 1–284

    Google Scholar 

  68. Cahn JW (1980) Acta Metall 28:1333

    Article  CAS  Google Scholar 

  69. Malvern LE (1969) Introduction to mechanics of a continuous medium. Prentice-Hall Inc, Englewood Cliffs, New Jersey

  70. Marichev VA (2010) Prot Met Phys Chem Surf 46(1):21

    Article  CAS  Google Scholar 

  71. Guz AN (1998) Int Appl Mech 34(10):965

    Article  Google Scholar 

  72. Donea J, Huerta A, Ponthot Ph, Rodríguez-Ferran A (2004) Arbitrary Lagrangean–Eulerian methods, in: E. Stein, R. Borst and T. Hughes (Eds.), Encyclopedia of computational mechanics, vol 1: Fundamentals, Chapter 14, John Wiley & Sons,, pp. 1–25

  73. Chung TJ (2007) General Continuum Mechanics. Press, Cambridge University

    Google Scholar 

  74. Jianhua Xiao (2007) Chen rational mechanics I. Introduction to rational mechanics, Sciencepaper Online, Ministry of Education, R.P. China

  75. Gurtin ME, Murdoch AI (1975) Arch RationMech Anal 57(4):291

    Google Scholar 

  76. Altenbach H, Eremeyev VA, Nikita F, Morozov NF (2013) in Surface effects in solid mechanics. In: Altenbach H, Morozov NF (eds) Advanced Structured Materials. Springer-Verlag, Berlin Heidelberg, pp. 21–32

    Chapter  Google Scholar 

  77. He LH, Li ZR (2006) Int J Solids and Structures 43:6208

    Article  Google Scholar 

  78. Eremeyev VA (2015) in Materials with internal structure: multiscale and multifield modeling and simulation (Ed. Patrizia Trovalusci) Springer, pp 29–41

  79. Elliott JAW, Ward CA (1997) Langmuir 13(5):951

    Article  CAS  Google Scholar 

  80. Parsons R (1954) Equilibrium properties of electrified interphases. In: Bockris JO’M, Conway BE (eds) Modern aspects of electrochemistry. Butterworth, London, p. 103

    Google Scholar 

  81. Gutman EM (1994) Mechanochemistry of solid surfaces. World Scientific, New Jersey-London

    Book  Google Scholar 

  82. Vetter KJ (1967) Electrochemical kinetics. Academic Press, N.-Y

    Google Scholar 

  83. Marichev VA (2010) Surf Sci 604:458

    Article  CAS  Google Scholar 

  84. Gokhshtein AYa (1975) Russ Chem Rev 44(11):921

  85. Valincius G (1999) J Electroanal Chem 478:40

    Article  CAS  Google Scholar 

  86. Valincius G (2000) J Electrochem Soc 147(4):1459

    Article  CAS  Google Scholar 

  87. Ziman JM (1964) Principles of the theory of solids. University Press, Cambridge

    Google Scholar 

  88. Delahay P (1965) Double layer and electrode kinetics. Interscience Publishers, John Wiley & Sons, New York

    Google Scholar 

  89. Morcos I (1975) Electroanal Chem Interfacial Electrochem 62:313

    Article  CAS  Google Scholar 

  90. Proost J (2005) J Solid State Electrochem 9:660

    Article  CAS  Google Scholar 

  91. Lipkowski J, Schmickler W, Kolb DM, Parsons R (1998) J Electroanal Chem 452:193

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Ben-Gurion University of the Negev.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Gutman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutman, E.M. Thermodynamic aspects of capillarity and electrocapillarity of solid interfaces. J Solid State Electrochem 20, 2929–2950 (2016). https://doi.org/10.1007/s10008-016-3232-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3232-5

Keywords

Navigation