Skip to main content

Experimental Methods to Characterize Complex Fluids

  • Chapter
  • First Online:
Transport Phenomena in Complex Fluids

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 598))

  • 884 Accesses

Abstract

This chapter presents an overview of measurement techniques to characterize the properties of complex fluids, with focus on the rheological characterization (both shear and extensional rheology), and on the most common surface tension measurement methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The relationship becomes exact only at the level of the plate, \(\theta =\pi /2\).

References

  • Andreas JM, Hauser EA, Tucker WB (1938) Boundary tension by pendant drops. J Phys Chem 42(8):1001–1019

    Article  Google Scholar 

  • Anna SL, McKinley GH, Nguyen DA, Sridhar T, Muller SJ, Huang J, James DF (2001) An inter-laboratory comparison of measurements from filament-stretching rheometers using common test fluids. J Rheol 45(1):83–114

    Article  Google Scholar 

  • Bach A, Rasmussen HK, Longin PY, Hassager O (2002) Growth of non-axisymmetric disturbances of the free surface in the filament stretching rheometer: experiments and simulation. J Non-Newton Fluid Mech 108(1–3):163–186

    Article  MATH  Google Scholar 

  • Bashforth F, Adams JC (1883) An attempt to test the theory of capillary action. Cambridge University Press

    Google Scholar 

  • Bazilevskii AB, Rozhkov AN (2015) Dynamics of the capillary breakup of a bridge in an elastic fluid. Fluid Dyn 50(6):800–811

    Article  MathSciNet  MATH  Google Scholar 

  • Bazilevskii AV, Voronkov SI, Entov VM, Rozhkov AN (1981) On orientational effects at breakup of jets and threads of dilute polymer solutions. Dokl Akad Nauk SSSR 257(2):336–339

    Google Scholar 

  • Bazilevskii AV, Entov VM, Lerner MM, Rozhkov AN (1997) Failure of polymer solution filaments. Polym Sci Ser A 39(3):316–324

    Google Scholar 

  • Bazilevskii AV, Entov VM, Rozhkov AN (2001) Breakup of an Oldroyd liquid bridge as a method for testing the rheological properties of polymer solutions. Polym Sci Ser A 43(7):716–726

    Google Scholar 

  • Bingham EC (1944) The history of the society of rheology from 1924–1944, executed by directive from the society. In: Original archived in the Niels Bohr Library and Archives. American Institute of Physics, College Park, MD

    Google Scholar 

  • Bird RB, Hassager O, Armstrong RC, Curtiss CF (1977) Dynamics of polymeric liquids, vol 1. Wiley, New York

    Google Scholar 

  • Burghelea TI, Starý Z, Münstedt H (2009) Local versus integral measurements of the extensional viscosity of polymer melts. J Rheol 53(6):1363–1377

    Article  Google Scholar 

  • Burghelea TI, Starý Z, Münstedt H (2011) On the viscosity overshoot during the uniaxial extension of a low density polyethylene. J Non-Newton Fluid Mech 166(19):1198–1209

    Article  MATH  Google Scholar 

  • Burghelea TI, Starý Z, Münstedt H (2012) Response to the reply to: on the viscosity overshoot during the uniaxial extension of a low density polyethylene by rasmussen et al. J Non-Newton Fluid Mech 171–172:107–108

    Google Scholar 

  • Considére A (1885) Memoire sur l’emploi du fer et de l’acier dans les constructions. Annales des Ponts et Chaussées 6(9):574–775

    Google Scholar 

  • Couette M (1880) Sur un nouvel appareil pour létude du frottement des fluides. Compt Rend Acad Sci Paris 107:388–390

    Google Scholar 

  • Couper A (1993) Surface tension and its measurement. In: Rossiter BW, Baetzold RC (eds) Physical methods of chemistry, vol 9A, 2nd edn. Wiley

    Google Scholar 

  • Drelich J, Fang C, White CL (2002) Measurement of interfacial tension in fluid-fluid systems. In: Hubbard AT (ed) Encyclopedia of surface and colloid science. Marcel Dekker

    Google Scholar 

  • Entov VM, Hinch EJ (1997) Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid. J Non-Newton Fluid Mech 72(1):31–53

    Article  Google Scholar 

  • Fainerman VB, Miller R (1998) The maximum bubble pressure tensiometry. In: Mbius D, Miller R (eds) Drops and bubbles in interfacial research, vol 6. Studies in interface science Elsevier, pp 279–326

    Google Scholar 

  • Fainerman VB, Makievski AV, Miller R (1993) The measurement of dynamic surface tensions of highly viscous liquids by the maximum bubble pressure method. Colloids Surf A Physicochem Eng Asp 75:229–235

    Article  Google Scholar 

  • Harkins WD, Jordan HF (1930) A method for determination of surface and interfacial tension from the maximum pull on a ring. J Am Chem Soc 52(5):1751–1772

    Article  Google Scholar 

  • Hoorfar M, Neumann AW (2006) Recent progress in axisymmetric drop shape analysis (ADSA). Adv Colloid Interface Sci 121(1):25–49

    Article  Google Scholar 

  • Lecomte du Noüy P (1925) An interfacial tensiometer for universal use. J Gen Physiol 7(5):625–631

    Article  Google Scholar 

  • Macosko CW (1994) Rheology: principles, measurements, and applications. Wiley, New York

    Google Scholar 

  • McKinley Gareth H, Tamarapu Sridhar (2002) Filament-stretching rheometry of complex fluids. Annu Rev Fluid Mech 34(1):375–415

    Article  MathSciNet  MATH  Google Scholar 

  • Meissner J (1969) Rheometer zur untersuchung der deformations-mechanischen eigenschaften yon kunststoff- schmelzen unter definierter zugbeanspruchung. Rheol Acta 8:78–88

    Article  Google Scholar 

  • Meissner J, Hostettler J (1994) A new elongational rheometer for polymer melts and other highly viscous liquids. Rheol Acta 33:1–21

    Article  Google Scholar 

  • Misak MD (1968) Equations for determining 1/h versus s values in computer calculations of interfacial tension by the pendent drop method. J Colloid Interface Sci 27(1):141–142

    Article  Google Scholar 

  • Moran K, Yeung A, Masliyah J (1999) Measuring interfacial tensions of micrometer-sized droplets: a novel micromechanical technique. Langmuir 15(24):8497–8504

    Article  Google Scholar 

  • Münstedt H (1979) New universal extensional rheometer for polymer melts. Measurements on a polystyrene sample. J Rheol 23(4):421–436

    Article  Google Scholar 

  • Münstedt H, Laun HM (1979) Elongational behaviour of a low density polyethylene melt. Rheol Acta 18(4):492–504

    Article  Google Scholar 

  • Princen HM, Zia IYZ, Mason SG (1967) Measurement of interfacial tension from the shape of a rotating drop. J Colloid Interface Sci 23(1):99–107

    Article  Google Scholar 

  • Río OI, Neumann AW (1997) Axisymmetric drop shape analysis: computational methods for the measurement of interfacial properties from the shape and dimensions of pendant and sessile drops. J Colloid Interface Sci 196(2):136–147

    Article  Google Scholar 

  • Rotenberg Y, Boruvka L, Neumann AW (1983) Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces. J Colloid Interface Sci 93(1):169–183

    Article  Google Scholar 

  • Rusanov AI, Prokhorov VA (1996) Interfacial tensiometry. Elsevier

    Google Scholar 

  • Sentmanat ML (2003a) A novel device for characterizing polymer flows in uniaxial extension. Soc Plastics Engineers, Tech Papers, CD-ROM, 49

    Google Scholar 

  • Sentmanat ML (2003b) Dual wind up extensional rheometer. US Patent No. 6578413

    Google Scholar 

  • Sentmanat ML (2004) Miniature universal testing platform: from extensional melt rheology to solid-state deformation behavior. Rheol Acta 43(6):657–669

    Article  Google Scholar 

  • Simon M (1851) Recherches sur la capillarité. Ann Chim Phys 32(3):5–41

    Google Scholar 

  • Slattery JC, Chen J (1978) Alternative solution for spinning drop interfacial tensiometer. J Colloid Interface Sci 64(2):371–373

    Article  Google Scholar 

  • Sonntag H (1982) Koloidy. PWN

    Google Scholar 

  • Stalder AF, Melchior T, Müller M, Sage D, Blu T, Unser M (2010) Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf A Physicochem Eng Asp 364(1–3):72–81

    Article  Google Scholar 

  • Starý Z, Papp M, Burghelea T (2015) Deformation regimes, failure and rupture of a low density polyethylene (LDPE) melt undergoing uniaxial extension. J Non-Newton Fluid Mech 219:35–49

    Article  Google Scholar 

  • Stauffer CE (1965) The measurement of surface tension by the pendant drop technique. J Phys Chem 69(6):1933–1938

    Article  Google Scholar 

  • Strutt JW (1916) On the theory of the capillary tube. Proc R Soc Lond Ser A 92(637):184–195

    Article  Google Scholar 

  • Sugden S (1922) The determination of surface tension from the maximum pressure in bubbles. J Chem Soc Trans 121:858–866

    Article  Google Scholar 

  • Sugden S (1924) The determination of surface tension from the maximum pressure in bubbles. Part II. J Chem Soc Trans 125:27–31

    Article  Google Scholar 

  • Szabo P (1997) Transient filament stretching rheometer part I: force balance analysis. Rheol Acta 36:277–284

    Google Scholar 

  • Tate T (1864) On the magnitude of a drop of liquid formed under different circumstances. Lond Edinb Dublin Philos Mag J Sci 27(181):176–180

    Article  Google Scholar 

  • Tirtaatmadja V, Sridhar T (1993) A filament stretching device for measurement of extensional viscosity. J Rheol 37(6):1081–1102

    Article  Google Scholar 

  • Vold RD, Vold MJ (1983) Colloid and interface chemistry. Addison-Wesley Publishing Co.

    Google Scholar 

  • Vonnegut B (1942) Rotating bubble method for the determination of surface and interfacial tensions. Rev Sci Instrum 13:6–9

    Article  Google Scholar 

  • Wilhelmy L (1863) Ueber die abhängigkeit der capillaritäts-constanten des alkohols von substanz und gestalt des benetzten fasten körpers. J Phys Chem 195(6):177–217

    Google Scholar 

  • Yeung A, Dabros T, Masliyah J (1998) Does equilibrium interfacial tension depend on method of measurement? J Colloid Interface Sci 208(1):241–247

    Article  Google Scholar 

  • Zuidema H, Waters G (1941) Ring method for the determination of interfacial tension. Ind Eng Chem Anal Ed 13(5):312–313

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volfango Bertola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 CISM International Centre for Mechanical Sciences, Udine

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bertola, V., Burghelea, T. (2020). Experimental Methods to Characterize Complex Fluids. In: Burghelea, T., Bertola, V. (eds) Transport Phenomena in Complex Fluids. CISM International Centre for Mechanical Sciences, vol 598. Springer, Cham. https://doi.org/10.1007/978-3-030-35558-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35558-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35557-9

  • Online ISBN: 978-3-030-35558-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics