Skip to main content
Log in

Enhanced electrochemical performance of carbon-coated LiMPO4 (M = Co and Ni) nanoparticles as cathodes for high-voltage lithium-ion battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Olivine LiMPO4 (M = Co and Ni) nanoparticles have been synthesized by the polyvinylpyrrolidone (PVP) assisted polyol method and adopted the resin coating process for carbon coating on the surface of the nanoparticles. The X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy studies confirmed the phase and structural co-ordination of bare and carbon-coated LiMPO4 (M = Co and Ni) nanoparticles, respectively. The formation of uniform carbon layer of nanometer-measured thickness over nanoparticles is confirmed by the high-resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDS). Wagner’s polarization study explains an improved electronic transport number (t e) for carbon-coated LiMPO4 (M = Co and Ni) cathodes as compared to bare samples. The electrochemical study of the Li-ion cells shows the first cycle discharge capacities of 180 and 97 mAh/g at 0.1 C for the cathodes LiCoPO4/C and LiNiPO4/C, respectively, which is an improvement of 21.2 and 25.8 % as compared to bare samples. The enhancement of electrochemical performance of the cells is attributed to the improved electronic properties of cathode materials due to the presence of carbon on the surface of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Valvo M, Lindgren F, Lafont U, Björefors F, Edström K (2014) Towards more sustainable negative electrodes in na-ion batteries via nanostructured iron oxide. J Power Sources 245:967–978

    Article  CAS  Google Scholar 

  2. Nageswara Rao B, Ramesh Kumar P, Padmaraj O, Venkateswarlu M, Satyanarayana N (2015) Rapid microwave assisted hydrothermal synthesis of porous α-Fe2O3 nanostructures as stable and high capacity negative electrode for lithium and sodium ion batteries. RSC Advances 5:34761–34768

    Article  CAS  Google Scholar 

  3. Jing S, Wu X-L, Yang C-P, Lee J-S, Kim J, Guo Y-G (2012) Self-Assembled LiFePO4/C Nano/Microspheres by Using Phytic Acid as Phosphorus Source. J Phys Chem C 116:5019–5024

    Google Scholar 

  4. Fisher CAJ, Hart Prieto VM, Islam SM (2008) Lithium battery materials LiMPO4 (M) Mn, Fe, Co, and Ni): insights into defect association, transport mechanisms, and doping behavior. Chem Mater 20:5907–5915

    Article  CAS  Google Scholar 

  5. Howard WF, Spotnitz RM (2007) Theoretical evaluation of high-energy lithium metal phosphate cathode materials in li-ion batteries. J Power Sources 165:887–891

    Article  CAS  Google Scholar 

  6. Wolfenstine J, Allen J (2004) LiNiPO4–LiCoPO4 solid solutions as cathodes. J Power Sources 136:150–153

    Article  CAS  Google Scholar 

  7. Malik R, Burch D, Bazant M, Ceder G (2010) Particle size dependence of the ionic diffusivity. Nano Lett 10:4123–4127

    Article  CAS  Google Scholar 

  8. Yang JS, Xu JJ (2006) Synthesis and characterization of carbon-coated lithium transition metal phosphates LiMPO4 (M = Fe, Mn, Co, Ni) prepared via a nonaqueous sol-gel route. J Electrochem Soc 153:A716–A723

    Article  CAS  Google Scholar 

  9. Choi D, Wang D, Bae IT, Xiao J, Nie Z, Wang W, Viswanathan VV, Lee YJ, Zhang JG, Graff GL, Yang Z, Liu J (2010) LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for li-ion battery cathode. Nano Lett 10:2799–2805

    Article  CAS  Google Scholar 

  10. Oh SM, Oh SW, Yoon CS, Scrosati B, Amine K, Sun YK (2010) High-performance carbon-LiMnPO4 nanocomposite cathode for lithium batteries. Adv Funct Mater 20:3260–3265

    Article  CAS  Google Scholar 

  11. Nageswara Rao B, Venkateswarlu M, Satyanarayana N (2014) Structural, electrical and dielectric studies of nanocrystalline LiMnPO4 particles. Ionics 20:927–934

    Article  Google Scholar 

  12. Nageswara Rao B, Padmaraj O, Narsimulu D, Venkateswarlu M, Satyanarayana N (2015) A.C conductivity and dielectric properties of spinel LiMn2O4 nanorods. Ceram Int 41:14070–14077

    Article  CAS  Google Scholar 

  13. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  14. Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 2:123–128

    Article  Google Scholar 

  15. Herle PS, Ellis B, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147–152

    Article  CAS  Google Scholar 

  16. Morgan D, VAN DER Van A, Ceder G (2004) Li conductivity in LiMPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem Solid-State Lett 7:A30–A32

    Article  CAS  Google Scholar 

  17. Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) Electroactivity of natural and synthetic triphylite. J Power Sources 97-98:503–507

    Article  CAS  Google Scholar 

  18. Vadivel Murugan A, Muraliganth T, Ferreira PJ, Manthiram A (2009) Dimensionally modulated single-crystalline LiMPO4 (M = Mn, Fe, Co, and Ni) with nano-thumblike shapes for high-power energy storage. Inorg Chem 48:946–952

    Article  CAS  Google Scholar 

  19. Muraliganth T, Vadivel Murugan A, Manthiram A (2008) Nanoscale networking of LiFePO4 nanorods synthesized by a microwave-solvothermal route with carbon nanotubes for lithium ion batteries. J Mater Chem 18:5661–5668

    Article  CAS  Google Scholar 

  20. Yamada A, Koizumi H, Nishimura SI, Sonoyama N, Kanno R, Yonemura M, Nakamura T, Kobayashi Y (2006) Room-temperature miscibility gap in LiFePO4. Nat Mater 5:357–360

    Article  CAS  Google Scholar 

  21. Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148:A224–A229

    Article  CAS  Google Scholar 

  22. Franger S, Cras FL, Bourbon C, Rouault H (2003) Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties. J Power Sources 119-121:252–257

    Article  CAS  Google Scholar 

  23. Ellis B, Kan WH, Makahnouk WRM, Nazar LF (2007) Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4. J Mater Chem 17:3248–3254

    Article  CAS  Google Scholar 

  24. Wang Y, Wang J, Yang J, Nuli Y (2006) High-rate LiFePO4 electrode material synthesized by a novel route from FePO44H2O. Adv Funct Mater 16:2135–2140

    Article  CAS  Google Scholar 

  25. Ding J, Su Z, Zhang Y (2016) Two-step synthesis of nanocomposite LiFePO4/C cathode materials for lithium ion batteries. New J Chemistry. doi:10.1039/C5NJ02626A

    Google Scholar 

  26. Zhang Y, Pan Y, Liu J, Wang G, Cao D (2015) Synthesis and electrochemical studies of carbon-modified LiNiPO4 as the cathode material of li-ion batteries. Chem Res Chin Univ 31:117–122

    Article  Google Scholar 

  27. Rosenberg S, Hintennach A (2015) In situ carbon coated LiCoPO4 synthesized via a microwave_assisted path1. Russ J Electrochem 51:305–309

    Article  CAS  Google Scholar 

  28. Ramesh Kumar P, Venkateswarlu M, Misra M, Mohanty AK, Satyanarayana N (2011) Carbon coated LiMnPO4 nanorods for lithium batteries. J Electrochem Soc 158:A227–A230

    Article  Google Scholar 

  29. Chandra S (1981) Super ionic solids principles and applications. North Holland Publishing Company, Amsterdam

    Google Scholar 

  30. Prakash I, Muralidharan P, Nallamuthu N, Venkateswarlu M, Satyanarayana N (2007) Preparation and characterization of nanocrystallite size cuprous oxide. Mater Res Bull 42:1619–1624

    Article  CAS  Google Scholar 

  31. Koleva V, Stoyanova R, Zhecheva E (2010) Nano-crystalline LiMnPO4 prepared by a new phosphate–formate precursor method. Mater Chem Phys 121:370–377

    Article  CAS  Google Scholar 

  32. Truong QD, Devaraju MK, Ganbe Y, Tomai T, Honma I (2014) Controlling the shape of LiCoPO4 nanocrystals by supercritical fluid process for enhanced energy storage properties. Scientific Reports 4:3975(1-8)

    Article  Google Scholar 

  33. Bramnik NN, Nikolowski K, Baehtz C, Bramnik KG, Ehrenberg H (2007) Phase transitions occurring upon lithium insertion − extraction of LiCoPO4. Chem Mater 19:908–913

    Article  CAS  Google Scholar 

  34. Wolfenstine J, Allen J (2005) Ni3+/Ni2+ redox potential in LiNiPO4. J Power Sources 142:389–390

    Article  CAS  Google Scholar 

  35. Karthickprabhu S, Hirankumar G (2014) Electrochemical studies on LiNi0.85Zn0.15PO4 cathode material synthesized by polyol method. Int J ChemTech Res 6(13):5256–5260

    CAS  Google Scholar 

  36. Ornek A, Bulut E, Can M (2015) Influence of gradual cobalt substitution on lithium nickel phosphate nano-scale composites for high voltage applications. Mater Charact 106:152–162

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nageswararao B.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P.R., Madhusudhanrao, V., B, N. et al. Enhanced electrochemical performance of carbon-coated LiMPO4 (M = Co and Ni) nanoparticles as cathodes for high-voltage lithium-ion battery. J Solid State Electrochem 20, 1855–1863 (2016). https://doi.org/10.1007/s10008-016-3151-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3151-5

Keywords

Navigation