Skip to main content
Log in

Amorphous iron phosphate/carbonized polyaniline nanorods composite as cathode material in sodium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

As-prepared polyaniline (PANI) nanorods have been used to synthesize an iron phosphate/polyaniline (FePO4/PANI) composition through the microemulsion technique. After sintering at 460 °C under a nitrogen protective atmosphere, the PANI carbonized, yielding the amorphous iron phosphate/carbonized polyaniline nanorods (FePO4/CPNRs) composite, which acts as the cathode material in sodium-ion batteries (SIBs). The electrochemical performance of FePO4/CPNRs composite shows an initial discharge specific capacity of 140.2 mAh g−1, with the discharge specific capacity being maintained at 134.4 mAh g−1 after the 120th cycle, up to 87.9 % of the theoretical capacity (154.1 mAh g−1 for NaFePO4), as well as an excellent rate capability in sodium-ion batteries. Compared with pure FePO4, the electrochemical performance has been greatly improved. On the one hand, using the CPNRs as conductive medium significantly improves electronic transport. On the other hand, the FePO4 sphere of nanoscale particles, which has a large specific surface area, can promote an active material/electrolyte interface reaction and improve the speed of sodiation and desodiation during the charge and discharge process. The amorphous FePO4/CPNRs composite shows outstanding electrochemical performance as competitive cathode material in SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Marcia KM (2011) U.S. Geological Survey: mineral commodity summaries 2011. USGS, USA

    Google Scholar 

  2. Kim SW, Seo DH, Ma X (2012) Adv Energy Mater 2:710–721

    Article  CAS  Google Scholar 

  3. Song W, Wu Z, Chen J, Lan Q, Zhu Y (2014) Electrochim Acta 146:142–150

    Article  CAS  Google Scholar 

  4. Larcher D, Tarascon JM (2015) Nat Chem 7:19–29

    Article  CAS  Google Scholar 

  5. Noguchi Y, Kobayashi E, Plashnitsa LS (2013) Electrochim Acta 101:59–65

    Article  CAS  Google Scholar 

  6. Nithya C, Gopukumar S (2015) Energy Environ Sci 4:253–278

    CAS  Google Scholar 

  7. Palomares V, Serras P, Villaluenga I (2012) Energy Environ Sci 5:5884–5901

    Article  CAS  Google Scholar 

  8. Ellis BL, Nazar LF (2012) Solid State Mater Sci 16:168–177

    Article  CAS  Google Scholar 

  9. Hong SY, Kim Y, Park Y, Choi A (2013) Energy Environ Sci 6:2067–2081

    Article  CAS  Google Scholar 

  10. Liu Y, Xu S, Zhang SM (2015) J Mater Chem A 3:5501–5508

    Article  CAS  Google Scholar 

  11. Xu SJ, Zhang SM, Zhang JX, Liu Y (2014) J Mater Chem A 2:7221–7728

    Article  CAS  Google Scholar 

  12. Liu Y, Xu Y (2012) Nano Lett 12:5664–5668

    Article  CAS  Google Scholar 

  13. Zaghib K, Trottier J, Hovington P (2011) J Power Sources 196:9612–9617

    Article  CAS  Google Scholar 

  14. Oh SM, Myung ST, Hassoun (2012) Electrochem Commun 22:149–152

    Article  CAS  Google Scholar 

  15. Burba CM, Frech R (2006) Spectrochim Acta A Mol Biomol Spectrosc 65:44–50

    Article  Google Scholar 

  16. Song YN, Suzuki M, Whittingham MS (2002) Inorg Chem 41:5578–5786

    Google Scholar 

  17. Whiteside A, Fisher CAJ, Parker SC (2014) Phys Chem Chem Phys 16:21788–21794

    Article  CAS  Google Scholar 

  18. Allen JL, Jow TR, Wolfenstine J (2008) J Solid State Electrochem 12:1031–1033

    Article  CAS  Google Scholar 

  19. Huang C, Cheng KH, Hsiao YS (2015) J Solid State Electrochem 19:2245–2253

    Article  Google Scholar 

  20. Liu Y, Zhou YR, Zhang JX, Zhang SM (2015) Phys Chem Chem Phys 17:22144–22151

    Article  CAS  Google Scholar 

  21. Churikov AV, Ivanishchev AV (2013) J Solid State Electrochem 18:1425–1441

    Article  Google Scholar 

  22. Zhang JX, Yang X (2011) Funct Mater Lett 4:323–326

    Article  Google Scholar 

  23. Yu SX, Dan S, Luo GE, Liu W (2012) J Solid State Electrochem 16:1675–1681

    Article  CAS  Google Scholar 

  24. Fang Y, Xiao L (2014) Nano Lett 14:3539–3543

    Article  CAS  Google Scholar 

  25. Cai Z, Martin CR (1989) J Am Chem Soc 111:4138–4139

    Article  CAS  Google Scholar 

  26. Ding HJ, Wan MX (2007) Adv Mater 19:465–469

    Article  CAS  Google Scholar 

  27. Mentus S, Ciric-Marjanovic G (2009) Nanotechnology 20:245601–245612

    Article  Google Scholar 

  28. Peřinka N, Držková M, Hajná M (2014) J Therm Anal 116:589–595

    Article  Google Scholar 

  29. Patil DS, Shaikh JS, Pawar SA (2012) Phys Chem Chem Phys 14:11886–11895

    Article  CAS  Google Scholar 

  30. Li XG, Li H, Huang MR (2011) J Phys Chem C 115:9486–9497

  31. Zhou Z, He D (2009) Thin Solid Films 517:6767–6771

    Article  CAS  Google Scholar 

  32. Huang J, Virji S, Weiller B (2003) J Am Chem Soc 125:314–316

    Article  CAS  Google Scholar 

  33. Hiura H, Ebbesen TW, Tanigaki K, Takahashi H (1993) Chem Phys Lett 202:509–512

    Article  CAS  Google Scholar 

  34. Bernard S, Beyssac O, Benzerara K, Findling N, Tzvetkov G (2010) Carbon 48:2506–2516

    Article  CAS  Google Scholar 

  35. Nascimento GM, Silva CHB, Temperini MLA (2008) Polym Degrad Stab 93:291–297

    Article  Google Scholar 

  36. Zaghib K, Julien CM (2005) J Power Sources 142:279–284

    Article  CAS  Google Scholar 

  37. Li C, Miao X (2015) J Mater Chem A 3:8265–8271

    Article  CAS  Google Scholar 

  38. Ivers-Tiffée E, Weber A, Schichlein H (2010) Handbook of Fuel Cells. John Wiley & Sons, Chichester

    Google Scholar 

  39. Casalbore M, Giuseppe C, Nadia B, Giancardo G (1998) J Solid State Electrochem 3:15–24

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out with the financial support of the Project of Shanghai Science and Technology Commission (13NM1401400), the Project of Shanghai Science and Technology Commission (14DZ2261000), the Project of Ability Development of Shanghai Science and Technology Commission (09230501400), and the Research Foundation of the Ministry of Education (No. 20502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junxi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhou, Y., Zhang, S. et al. Amorphous iron phosphate/carbonized polyaniline nanorods composite as cathode material in sodium-ion batteries. J Solid State Electrochem 20, 479–487 (2016). https://doi.org/10.1007/s10008-015-3063-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3063-9

Keywords

Navigation