Skip to main content
Log in

Thermal analysis of polyaniline poly(N-vinylpyrrolidone)-stabilized dispersions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The polyaniline dispersions stabilized with poly(N-vinylpyrrolidone) (PANI/PVP) were synthesized by oxidative polymerization with different mass ratios of PANI and PVP and different molar concentrations of the components in the polymerization mixture. The composite powders prepared from colloidal PANI/PVP dispersions were characterized by thermogravimetry and differential thermal analysis. The change in the ratio of PANI and PVP as well as the starting molar concentrations of aniline hydrochloride and oxidant has influence on the resulting properties of the dispersions. Concerning the doping, the results show that PANI/PVP powders are stable up to approximately 160 °C. Degradation of polymer chains starts at temperatures above 250 °C. The PANI/PVP composite powders with lower content of PANI exhibit slightly higher thermal stability. Further, colloidal PANI/PVP dispersions were screen-printed on aluminum foil for infrared spectroscopic characterization and on poly(ethylene terephthalate) foil for electrical measurements. The sheet resistance of printed layers measured by two-point probe was of the order of tens to thousands of kΩ sq−1. The influence of both the change in the composition and the drying temperature is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gupta K, Jana PC, Meikap AK. Electrical transport and optical properties of the composite of polyaniline nanorod with gold. Solid State Sci. 2012;14:324–9.

    Article  CAS  Google Scholar 

  2. Zhu JH, Gu HB, Luo ZP, Haldolaarachige N, Young DP, Wei SY, Guo ZH. Carbon nanostructure-derived polyaniline metacomposites: electrical, dielectric, and giant magnetoresistive properties. Langmuir. 2012;28:10246–55.

    Article  CAS  Google Scholar 

  3. Bora C, Dolui SK. Fabrication of polypyrrole/graphene oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their optical, electrical and electrochemical properties. Polymer. 2012;53:923–32.

    Article  CAS  Google Scholar 

  4. Xing SX, Zhao C, Jing SY, Wu Y, Wang ZC. Morphology and gas-sensing behavior of in situ polymerized nanostructured polyaniline films. Eur Polym J. 2006;42:2730–5.

    Article  CAS  Google Scholar 

  5. Zhang X, Zhu JH, Haldolaarachchige N, Ryu J, Young DP, Wei SY, Guo ZH. Synthetic process engineered polyaniline nanostructures with tunable morphology and physical properties. Polymer. 2012;53:2109–20.

    Article  CAS  Google Scholar 

  6. Stejskal J, Exnerová M, Morávková Z, Trchová M, Hromádková J, Prokeš J. Oxidative stability of polyaniline. Polym Degrad Stab. 2012;97:1026–33.

    Article  CAS  Google Scholar 

  7. Sumboja A, Foo CY, Yan J, Yan CY, Gupta RK, Lee PS. Significant electrochemical stability of manganese dioxide/polyaniline coaxial nanowires by self-terminated double surfactant polymerization for pseudocapacitor electrode. J Mater Chem. 2012;22:23921–8.

    Article  CAS  Google Scholar 

  8. Gu HB, Huang YD, Zhang X, Wang Q, Zhu JH, Shao L, Haldolaarachchige N, Young DP, Wei SY, Guo ZH. Magnetoresistive polyaniline–magnetite nanocomposites with negative dielectrical properties. Polymer. 2012;53:801–9.

    Article  CAS  Google Scholar 

  9. Bejbouji H, Vignau L, Miane JL, Dang MT, Oualim EM, Harmouchi M, Mouhsen A. Polyaniline as a hole injection layer on organic photovoltaic cells. Sol Energy Mater Sol Cells. 2010;94:176–81.

    Article  CAS  Google Scholar 

  10. Ramamurthy PC, Malshe AM, Harrell WR, Gregory RV, McGuire K, Rao AM. Polyaniline/single-walled carbon nanotube composite electronic devices. Solid State Electron. 2004;48:2019–24.

    Article  CAS  Google Scholar 

  11. Vieira NCS, Fernandes EGR, Faceto AD, Zucolotto V, Guimarães FEG. Nanostructured polyaniline thin films as pH sensing membranes in FET-based devices. Sens Actuat B-Chem. 2011;160:312–7.

    Google Scholar 

  12. Zhang LY, Xiong SX, Ma J, Lu XH. A complementary electrochromic device based on polyaniline-tethered polyhedral oligomeric silsesquioxane and tungsten oxide. Sol Energy Mater Sol Cells. 2009;93:625–9.

    Article  CAS  Google Scholar 

  13. Stejskal J, Sapurina I. Polyaniline: thin films and colloidal dispersions (IUPAC technical report). Pure Appl Chem. 2005;77:815–26.

    Article  CAS  Google Scholar 

  14. Blinova NV, Sapurina I, Klimovič J, Stejskal J. The chemical and colloidal stability of polyaniline dispersions. Polym Degrad Stab. 2005;88:428–34.

    Article  CAS  Google Scholar 

  15. Kulkarni VG, Campbell LD, Mathew WR. Thermal stability of polyaniline. Synth Met. 1989;30:321–5.

    Article  CAS  Google Scholar 

  16. Yue J, Epstein AJ, Zhong Z, Gallagher PK, MacDiarmid AG. Thermal stabilities of polyanilines. Synth Met. 1991;41:765–8.

    Article  CAS  Google Scholar 

  17. Traore MK, Stevenson WTK, McCormick BJ, Dorey RC, Wen S, Meyers D. Thermal analysis of polyaniline part I. Thermal degradation of HCl-doped emeraldine base. Synth Met. 1991;40:137–53.

    Article  CAS  Google Scholar 

  18. Kulkarni MV, Viswanath AK, Marimuthu R, Seth T. Spectroscopic, transport, and morphological studies of polyaniline doped with inorganic acids. Polym Eng Sci. 2004;44:1676–81.

    Article  CAS  Google Scholar 

  19. Chan HSO, Teo MYB, Khor E, Lim CN. Thermal analysis of conducting polymers part I. J Therm Anal. 1989;35:765–74.

    Article  CAS  Google Scholar 

  20. Wei Y, Hsueh KF. Thermal analysis of chemically synthesized polyaniline and effects of thermal aging on conductivity. J Polym Sci A. 1989;27:4351–63.

    Article  CAS  Google Scholar 

  21. Lau C, Mi YL. A study of blending and complexation of poly(acrylic acid)/poly(vinyl pyrrolidone). Polymer. 2002;43:823–9.

    Article  CAS  Google Scholar 

  22. Trchová M, Konyushenko EN, Stejskal J, Kovářová J, Ćirić-Marjanović G. The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes. Polym Degrad Stab. 2009;94:929–38.

    Article  CAS  Google Scholar 

  23. Trchová M, Sapurina I, Hlavatá D, Prokeš J, Stejskal J. FTIR study of polyaniline–fullerene complex. Synth Met. 2001;121:1117–8.

    Article  Google Scholar 

  24. Wang SX, Sun LX, Tan ZC, Xu F, Li YS. Synthesis, characterization and thermal analysis of polyaniline (PANI)/Co3O4 composites. J Therm Anal Calorim. 2007;89:609–12.

    Article  CAS  Google Scholar 

  25. Qi YN, Xu F, Sun LX. Thermal stability and glass transition behavior of PANI/MWNT composites. J Therm Anal Calorim. 2008;94:137–41.

    Article  CAS  Google Scholar 

  26. Huang ZH, Wang SX, Li H, Zhang SH, Tan ZC. Thermal stability of several polyaniline/rare earth oxide composites. J Therm Anal Calorim. 2014;115:259–66.

    Google Scholar 

  27. Colthup NB, Daly LH, Wiberley SE. Introduction to infrared and Raman spectroscopy. 2nd ed. New York: Academic Press; 1975.

    Google Scholar 

  28. Zhu XF, Lu P, Chen W, Dong JA. Studies of UV crosslinked poly(N-vinylpyrrolidone) hydrogels by FTIR, Raman and solid-state NMR spectroscopies. Polymer. 2010;51:3054–63.

    Article  CAS  Google Scholar 

  29. Rannou P, Nechtschein M. Aging studies on polyaniline: conductivity and thermal stability. Synth Met. 1997;84:755–6.

    Article  CAS  Google Scholar 

  30. Prokeš J, Trchová M, Hlavatá D, Stejskal J. Conductivity ageing in temperature-cycled polyaniline. Polym Degrad Stab. 2002;78:393–401.

    Article  Google Scholar 

  31. Mažeikienė R, Statino A, Kuodis Z, Niaura G, Malinauskas A. In situ Raman spectroelectrochemical study of self-doped polyaniline degradation kinetics. Electrochem Commun. 2006;8:1082–6.

    Article  CAS  Google Scholar 

  32. Šeděnková I, Prokeš J, Trchová M, Stejskal J. Conformational transition in polyaniline films – Spectroscopic and conductivity studies of ageing. Polym Degrad Stab. 2008;93:428–35.

    Article  CAS  Google Scholar 

  33. Šeděnková I, Trchová M, Stejskal J. Thermal degradation of polyaniline films prepared in solutions of strong and weak acids and in water – FTIR and Raman spectroscopic studies. Polym Degrad Stab. 2008;93:2147–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Agency of the Czech Republic (Project No. TE01020022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markéta Držková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peřinka, N., Držková, M., Hajná, M. et al. Thermal analysis of polyaniline poly(N-vinylpyrrolidone)-stabilized dispersions. J Therm Anal Calorim 116, 589–595 (2014). https://doi.org/10.1007/s10973-014-3667-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3667-9

Keywords

Navigation