Skip to main content
Log in

Thermodynamics of interactions between lead(II) and cadmium(II) ions and azulene-based complexing polymer films

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In order to understand the essential processes/interactions between the metal ions and modified electrodes which are based on complexing polymeric films, access to thermodynamic characteristics is compulsory. The paper enlarges the information concerning the sorption of metal ions within complexing polymer films, particularly based on azulene, which can be involved in metal detection sensors. Interactions between lead(II) or cadmium(II) ions and complexing polymer films have been studied using chemical preconcentration–anodic stripping method. The films have been obtained by controlled potential electrolysis in millimolar solutions of 4-azulen-1-yl-2,6-bis(2-thienyl)pyridine (L) in acetonitrile. PolyL films affinities towards these metal ions have been quantified at different temperatures by means of sorption isotherms. Parameters for sorption of lead(II) and cadmium(II) ions within polyL films have been calculated for Freundlich, Langmuir and Redlich–Peterson isotherms. The best fit was obtained when using Langmuir isotherm. The results evidence that lead ions are better sorbed than cadmium within polyL film. Thermodynamic parameters for the chemical sorption of lead(II) and cadmium(II) ions within polyL films have been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shukla GS, Singhal RL (1984) The present status of biological effects of toxic metals in the environment: lead, cadmium, and manganese. Can J Physiol Pharmacol 62:1015–1031

    Article  CAS  Google Scholar 

  2. World Health Organization (2011) Guidelines for drinking-water quality, fourth edition.

  3. O’Shea TA, Mancy KH (1976) Characterization of trace metal-organic interactions by anodic stripping voltammetry. Anal Chem 48:1603–1607

    Article  Google Scholar 

  4. Diaz-Cruz JM, Arino C, Esteban M, Casassas E (1991) Polarography and stripping voltammetry of metal–polycarboxylate complexes: complexes of cadmium and zinc with polyacrylic and polymethacrylic acids. Electroanalysis 3:299–307

    Article  CAS  Google Scholar 

  5. Berbel F, Cortes J, Diaz-Cruz JM, Arino C, Esteban M (1998) Anodic stripping voltammetry of metal ions in mixtures of ligands. Electroanalysis 10:417–422

    Article  CAS  Google Scholar 

  6. Shuman MS, Woodward GP Jr (1973) Chemical constants of metal complexes from a complexometric titration followed with anodic stripping voltammetry. Anal Chem 45:2032–2035

    Article  CAS  Google Scholar 

  7. Brown SD, Kowalski BR (1979) Atomic absorption spectrometry with a photodiode array spectrometer. Anal Chem 52:2133–2140

    Article  Google Scholar 

  8. Tushall JR Jr, Brezonik PL (1981) Evaluation of the copper anodic stripping voltammetry complexometric titration for complexing capacities and conditional stability constants. Anal Chem 53:1986–1989

    Article  Google Scholar 

  9. Diaz-Cruz JM, Arino C, Esteban M, Casassas E (1993) Voltammetry of Cu(II) in the presence of polymethacrylate. Anal Chim Acta 273:289–296

    Article  CAS  Google Scholar 

  10. Tutunji MF (1995) Determination of formation constants of metal complexes by potentiometric stripping analysis. Electroanalysis 7:390–394

    Article  CAS  Google Scholar 

  11. Crouch AM, Khotseng LE, Polhuis M, Williams DR (2001) Comparative study of cyclic voltammetry with potentiometric analysis for determining formation constants for polyaminocarboxylate–metal ion complexes. Anal Chim Acta 448:231–237

    Article  CAS  Google Scholar 

  12. Osipova EA, Sladkov VE, Kamanev AJ, Shkinev VM, Geckeler KE (2000) Determination of Ag(I), Hg(II), Cu(II), Pb(II), Cd(II) by stripping voltammetry in aqueous solutions using complexing polymers in conjunction with membrane filtration. Anal Chim Acta 404:231–240

    Article  CAS  Google Scholar 

  13. Buica G-O, Ungureanu E-M, Birzan L, Razus AC, Mandoc L-R (2013) Voltammetric sensing of lead and cadmium using poly(4-azulen-1-yl-2,6-bis(2-thienyl)pyridine) complexing films. J Electroanal Chem 693:67–72

    Article  CAS  Google Scholar 

  14. Buica G-O, Bucher C, Moutet J-C, Royal G, Saint-Aman E, Ungureanu E-M (2009) Voltammetric sensing of mercury and copper cations at poly(EDTA-like) film modified electrode. Electroanalysis 21:77–86

    Article  CAS  Google Scholar 

  15. Wang J (1998) In: Bard AJ (ed.) Electroanalytical chemistry, vol 18. Dekker, New York Basel Hong Kong 1–88

  16. Arrigan DWM (1994) Tutorial review. Voltammetric determination of trace metals and organics after accumulation at modified electrodes. Analyst 119:1953–1966

    Article  CAS  Google Scholar 

  17. Heitzmann M, Bucher C, Moutet JC, Pereira E, Rivas BL, Royal G, Saint-Aman E (2007) Complexation of poly(pyrrole-EDTA like) film modified electrodes: application to metal cations electroanalysis. Electrochim Acta 52:3082–3087

    Article  CAS  Google Scholar 

  18. Lange U, Roznyatovskaya NV, Mirsky VM (2008) Conducting polymers in chemical sensors and arrays. Anal Chim Acta 614:1–26

    Article  CAS  Google Scholar 

  19. Cai Q, Khoo SB (1994) Poly(3,3′-diaminobenzidine) film on a gold electrode for selective preconcentration and stripping analysis of selenium(IV). Anal Chem 66:4543–4550

    Article  CAS  Google Scholar 

  20. Ugo P, Moretto LM, Bertoncello P, Wang J (1998) Determination of trace mercury in saltwaters at screen-printed electrodes modified with sumichelate Q10R. Electroanalysis 10:1017–1021

    Article  CAS  Google Scholar 

  21. Ugo P, Sperni L, Moretto LM (1997) Ion-exchange voltammetry of trace mercury(II) at glassy carbon electrodes coated with a cationic polypyrrole derivative. Application to pore-waters analysis. Electroanalysis 9:1153–1158

    Article  CAS  Google Scholar 

  22. Rivas BL, Moreno-Villoslada I (2000) Effect of the polymer concentration on the interactions of water-soluble polymers with metal ions. Chem Lett 2:166–167

    Article  Google Scholar 

  23. Rivas BL, Pereira ED, Moreno-Villoslada I (2003) Water-soluble polymer–metal ion interactions. Prog Polym Sci 28:173–208

    Article  CAS  Google Scholar 

  24. Buica G-O, Ungureanu E-M, Birzan L, Razus AC, Bujduveanu M-R (2011) Films of poly(4-azulen-1-yl-2,6-bis(2-thienyl)pyridine) for heavy metal ions complexation. Electrochim Acta 56:5028–5036

    Article  CAS  Google Scholar 

  25. Heitzmann M, Bucher C, Moutet J-C, Pereira E, Rivas BL, Royal G, Saint-Aman E (2007) Characterization of metal cations-complexing polymer films interactions followed with anodic stripping voltammetry. J Electroanal Chem 610:147–153

    Article  CAS  Google Scholar 

  26. Buica G-O, Ungureanu E-M, Bucher C, Moutet J-C, Saint-Aman E (2008) Étude thermodynamique de la complexation de mercure(II) et cuivre(II) par des films de poly(ethylenediamine tetra-n-(3-pyrrole-1-yl)propylacetamide). UPB Sci Bull B 70:3–12

    CAS  Google Scholar 

  27. Razus AC, Birzan L, Cristea M, Tecuceanu V, Hanganu A, Enache C (2011) 4-(azulen-1-yl) six-membered heteroaromatics substituted with thiophen-2-yl or furan-2-yl moieties in 2 and 6 positions. J Heterocycl Chem 48:1019–1027

    Article  CAS  Google Scholar 

  28. Kamyabi MA, Soleymani-Bonoti F, Zakavi S (2015) Voltammetric determination of stability constants of lead complexes with diallyl disulfide, dimethyl disulfide, and diallyl sulfide. Chin Chem Lett. doi:10.1016/j.cclet.2015.09.001

    Google Scholar 

  29. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  30. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  31. McKay G, Allen SJ (1980) Surface mass transfer process using peat as an adsorbent for dyestuffs. Can J Chem Eng 58:521–526

    Article  CAS  Google Scholar 

  32. Redlich O, Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 63:1024–1026

    Article  CAS  Google Scholar 

  33. Prasad RK, Srivastava SN (2009) Sorption of distillery spent wash onto fly ash: kinetics and mass transfer studies. Chem Eng J 146:90–97

    Article  Google Scholar 

  34. Ng JCY, Cheung WH, McKay G (2002) Equilibrium studies of the sorption of Cu(II) ions onto chitosan. J Colloid Interface Sci 255:64–74

    Article  CAS  Google Scholar 

  35. Wong YC, Szeto YS, Cheung WH, McKay G (2004) Adsorption of acid dyes on chitosan-equilibrium isotherm analyses. Process Biochem 39:693–702

    Article  CAS  Google Scholar 

  36. Boulinguiez B, Le Cloirec P, Wolbert D (2008) Revisiting the determination of langmuir parameters application to tetrahydrothiophene adsorption onto activated carbon. Langmuir 24:6420–6424

    Article  CAS  Google Scholar 

  37. Kumar KV, Porkodi K, Rocha F (2008) Isotherms and thermodynamics by linear and non-linear regression analysis for the sorption of methylene blue onto activated carbon: comparison of various error functions. J Hazard Mater 151:794–804

    Article  CAS  Google Scholar 

  38. Ho YS (2006) Isotherms for the sorption of lead onto peat: comparison of linear and non-linear methods. Pol J Environ Stud 15:81–86

    CAS  Google Scholar 

  39. Ho YS, Ofomaja AE (2005) Kinetics and thermodynamics of lead ion sorption on palm kernel fibre from aqueous solution. Process Biochem 40:3455–3461

    Article  CAS  Google Scholar 

  40. Alkan M, Demirbaş Ö, Çelikçapa S, Doğan M (2004) Sorption of acid red 57 from aqueous solution onto sepiolite. J Hazard Mater 116:135–145

    Article  CAS  Google Scholar 

  41. Gupta VK (1998) Equilibrium uptake, sorption dynamics, process development, and column operations for the removal of copper and nickel from aqueous solution and wastewater using activated slag, a low-cost adsorbent. Ind Eng Chem Res 37:192–202

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from UEFISCDI projects ID 15/2011 and ID 236/2014, and the work done by Dr. Roxana Luisa Popescu (Mandoc) has been supported by the Sectorial Operational Programme Human Resources Development (SOP HRD), financed from the European Social Fund and the Romanian Government under the contract number POSDRU/159/1.5/S/137390.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleonora-Mihaela Ungureanu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2591 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buica, GO., Birzan, L., Popescu (Mandoc), LR. et al. Thermodynamics of interactions between lead(II) and cadmium(II) ions and azulene-based complexing polymer films. J Solid State Electrochem 20, 401–411 (2016). https://doi.org/10.1007/s10008-015-3055-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3055-9

Keywords

Navigation