Skip to main content
Log in

Electrocatalysis of oxygen reduction on multi-walled carbon nanotube supported copper and manganese phthalocyanines in alkaline media

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Manganese phthalocyanine (MnPc) and copper phthalocyanine (CuPc)-modified electrodes were prepared using multi-walled carbon nanotubes (MWCNTs) as a support material. The catalyst materials were heat treated at four different temperatures to investigate the effect of pyrolysis on the oxygen reduction reaction (ORR) activity of these electrocatalysts. The MWCNT to metal phthalocyanine ratio was varied. Scanning electron microscopy (SEM) was employed to visualise the surface morphology of the electrodes and the x-ray photoelectron spectroscopic (XPS) study was carried out to analyse the surface composition of the most active catalyst materials. The ORR was studied in 0.1 M KOH solution employing the rotating disk electrode (RDE) method. Glassy carbon (GC) electrodes were modified with carbon nanotube-supported metal phthalocyanine catalysts using Tokuyama AS-4 ionomer. The RDE results revealed that the highest electrocatalytic activity for ORR was achieved upon heat treatment at 800 °C. CuPc-derived catalyst demonstrated lower catalytic activity as compared to the MnPc-derived counterpart, which is in good agreement with previous literature, whereas the activity of MnPc-based catalyst was higher than that reported earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang L, Zhang JJ, Wilkinson DP, Wang HJ (2006) J Power Sources 156:171–182

    Article  CAS  Google Scholar 

  2. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Science 323:760–764

    Article  CAS  Google Scholar 

  3. James B, Kalinoski J (2009) DOE-EERE fuel cell technologies program-2009 DOE hydrogen program review

    Google Scholar 

  4. Nie Y, Li L, Wei Z (2015) Chem Soc Rev 44:2168–2201

    Article  CAS  Google Scholar 

  5. Jasinski R (1964) Nature 201:1212–1213

    Article  CAS  Google Scholar 

  6. Baranton S, Coutanceau C, Roux C, Hahn F, Léger JM (2005) J Electroanal Chem 577:223–234

    Article  CAS  Google Scholar 

  7. Claude E, Addou T, Latour JM, Aldebert P (1997) J Appl Electrochem 28:57–64

    Article  Google Scholar 

  8. Lalande G, Faubert G, Côté R, Guay D, Dodelet JP, Weng LT, Bertrand P (1996) J Power Sources 61:227–237

    Article  CAS  Google Scholar 

  9. Li X, Popov BN, Kawahara T, Yanagi H (2011) J Power Sources 196:1717–1722

    Article  CAS  Google Scholar 

  10. Kalvelage H, Mecklenburg A, Kunz U, Hoffmann U (2000) Chem Eng Technol 23:803–807

    Article  CAS  Google Scholar 

  11. Bambagioni V, Bianchini C, Filippi J, Lavacchi A, Oberhauser W, Marchionni A, Moneti S, Vizza F, Psaro R, Dal Santo V, Gallo A, Recchia S, Sordelli L (2011) J Power Sources 196:2519–2529

    Article  CAS  Google Scholar 

  12. Yuan Y, Ahmed J, Kim S (2011) J Power Sources 196:1103–1106

    Article  CAS  Google Scholar 

  13. Lu Y, Reddy RG (2007) Electrochim Acta 52:2562–2569

    Article  CAS  Google Scholar 

  14. Mamuru SA, Ozoemena KI (2010) Electroanalysis 22:985–994

    Article  CAS  Google Scholar 

  15. Zhang W, Shaikh AU, Tsui EY, Swager TM (2009) Chem Mater 21:3234–3241

    Article  CAS  Google Scholar 

  16. Schilling T, Okunola A, Masa J, Schuhmann W, Bron M (2010) Electrochim Acta 55:7597–7602

    Article  CAS  Google Scholar 

  17. Okunola A, Kowalewska B, Bron M, Kulesza PJ, Schuhmann W (2009) Electrochim Acta 54:1954–1960

    Article  CAS  Google Scholar 

  18. Xu Z, Li H, Cao G, Zhang Q, Li K, Zhao X (2011) J Mol Catal A Chem 335:89–96

    Article  CAS  Google Scholar 

  19. Morozan A, Campidelli S, Filoramo A, Jousselme B, Palacin S (2011) Carbon 49:4839–4847

    Article  CAS  Google Scholar 

  20. Kim SK, Jeon S (2012) Electrochem Commun 22:141–144

    Article  CAS  Google Scholar 

  21. He Q, Yang X, He R, Bueno-López A, Miller H, Ren X, Yang W, Koel BE (2012) J Power Sources 213:169–179

    Article  CAS  Google Scholar 

  22. Wiesener K (1986) Electrochim Acta 31:1073–1078

    Article  CAS  Google Scholar 

  23. Lee K, Ishihara A, Mitsushima S, Kamiya N, Ota KI (2004) Electrochim Acta 49:3479–3485

    Article  CAS  Google Scholar 

  24. Meng H, Larouche N, Lefèvre M, Jaouen F, Stansfield B, Dodelet JP (2010) Electrochim Acta 55:6450–6461

  25. Scherson DA, Gupta SL, Fierro C, Yeager EB, Kordesch ME, Eldridge J, Hoffman RW, Blue J (1983) Electrochim Acta 28:1205–1209

    Article  CAS  Google Scholar 

  26. van Veen JAR, Colijn HA, van Baar JF (1988) Electrochim Acta 33:801–804

    Article  Google Scholar 

  27. Lefèvre M, Dodelet JP, Bertrand P (2002) J Phys Chem B 106:8705–8713

    Article  Google Scholar 

  28. Bouwkamp-Wijnoltz AL, Visscher W, Van Veen JAR, Boellaard E, Van der Kraan AM, Tang SC (2002) J Phys Chem B 106:12993–13001

    Article  CAS  Google Scholar 

  29. Vasudevan P, Santosh, Mann N, Tyagi S (1990) Transit Metal Chem 15:81–90

    Article  CAS  Google Scholar 

  30. Van Veen JAR, Van Baar JF, Kroese KJ (1981) J Chem Soc Faraday Trans 1: Phys Chem Condens Phases 77:2827–2843

    Article  Google Scholar 

  31. Biloul A, Contamin O, Savy M, Scarbeck G, Riga J, Verbist J (1994) J Electroanal Chem 379:321–328

    Article  Google Scholar 

  32. Biloul A, Contamin O, Scarbeck G, Savy M, Palys B, Riga J, Verbist J (1994) J Electroanal Chem 365:239–246

    Article  CAS  Google Scholar 

  33. Sehlotho N, Nyokong T (2006) J Electroanal Chem 595:161–167

    Article  CAS  Google Scholar 

  34. Guo J, He H, Chu D, Chen R (2012) Electrocatalysis 3:252–264

  35. Vignarooban K, Lin J, Arvay A, Kolli S, Kruusenberg I, Tammeveski K, Munukutla L, Kannan AM (2015) Chin J Catal 36:458–472

  36. Yu EH, Cheng S, Logan BE, Scott K (2009) J Appl Electrochem 39:705–711

    Article  CAS  Google Scholar 

  37. Chen R, Li H, Chu D, Wang G (2009) J Phys Chem C 113:20689–20697

    Article  CAS  Google Scholar 

  38. Zagal JH (1992) Coord Chem Rev 119:89–136

    Article  CAS  Google Scholar 

  39. Zhang S, Zhang H, Hua X, Chen S (2015) J Mater Chem A 3:10013–10019

    Article  CAS  Google Scholar 

  40. Orellana W (2012) Chem Phys Lett 541:81–84

    Article  CAS  Google Scholar 

  41. Zagal JH, Javier Recio F, Gutierrez CA, Zuñiga C, Páez MA, Caro CA (2014) Electrochem Commun 41:24–26

    Article  CAS  Google Scholar 

  42. Domínguez C, Pérez-Alonso FJ, Abdel Salam M, Gómez De La Fuente JL, Al-Thabaiti SA, Basahel SN, Peña MA, Fierro JLG, Rojas S (2014) Int J Hydrogen Energy 39:5309–5318

    Article  Google Scholar 

  43. Zhang Q, Zhu T, Qing X, Qiao J, Sun S (2015) RSC Adv 5:50344–50352

    Article  CAS  Google Scholar 

  44. Reis RM, Valim RB, Rocha RS, Lima AS, Castro PS, Bertotti M, Lanza MRV (2014) Electrochim Acta 139:1–6

    Article  CAS  Google Scholar 

  45. Ding L, Xin Q, Dai X, Zhang J, Qiao J (2013) Ionics 19:1415–1422

    Article  CAS  Google Scholar 

  46. Vallejos-Burgos F, Utsumi S, Hattori Y, Garcia X, Gordon AL, Kanoh H, Kaneko K, Radovic LR (2012) Fuel 99:106–117

    Article  CAS  Google Scholar 

  47. Guo J, Zhou J, Chu D, Chen R (2013) J Phys Chem C 117:4006–4017

    Article  CAS  Google Scholar 

  48. Masheter AT, Xiao L, Wildgoose GG, Crossley A, Jones JH, Compton RG (2007) J Mater Chem 17:3515–3524

    Article  CAS  Google Scholar 

  49. Wildgoose GG, Abiman P, Compton RG (2009) J Mater Chem 19:4875–4886

    Article  CAS  Google Scholar 

  50. Ding L, Qiao J, Dai X, Zhang J, Zhang J, Tian B (2012) Int J Hydrogen Energy 37:14103–14113

    Article  CAS  Google Scholar 

  51. Kruusenberg I, Matisen L, Tammeveski K (2013) J Nanosci Nanotechnol 13:621–627

    Article  CAS  Google Scholar 

  52. Ratso S, Kruusenberg I, Vikkisk M, Joost U, Shulga E, Kink I, Kallio T, Tammeveski K (2014) Carbon 73:361–370

    Article  CAS  Google Scholar 

  53. Kruusenberg I, Ratso S, Vikkisk M, Kanninen P, Kallio T, Kannan AM, Tammeveski K (2015) J Power Sources 281:94–102

    Article  CAS  Google Scholar 

  54. Kruusenberg I, Matisen L, Shah Q, Kannan AM, Tammeveski K (2012) Int J Hydrogen Energy 37:4406–4412

    Article  CAS  Google Scholar 

  55. Sheng Z-H, Shao L, Chen J-J, Bao W-J, Wang F-B, Xia X-H (2011) ACS Nano 5:4350–4358

    Article  CAS  Google Scholar 

  56. Tammeveski K, Kontturi K, Nichols RJ, Potter RJ, Schiffrin DJ (2001) J Electroanal Chem 515:101–112

    Article  CAS  Google Scholar 

  57. Kruusenberg I, Mondal J, Matisen L, Sammelselg V, Tammeveski K (2013) Electrochem Commun 33:18–22

    Article  CAS  Google Scholar 

  58. Lima F, Fortunato GV, Maia G (2013) RSC Adv 3:9550–9560

    Article  CAS  Google Scholar 

  59. Alves MCM, Dodelet JP, Guay D, Ladouceur M, Tourillon G (1992) J Phys Chem 96:10898–10905

    Article  CAS  Google Scholar 

  60. Ladouceur M, Lalande G, Guay D, Dodelet JP, Dignardbailey L, Trudeau ML, Schulz R (1993) J Electrochem Soc 140:1974–1981

    Article  CAS  Google Scholar 

  61. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  62. Davis RE, Horvath GL, Tobias CW (1967) Electrochim Acta 12:287–297

    Article  CAS  Google Scholar 

  63. Lide DR (2001) CRC Handbook of Chemistry and Physics, 82nd edn. CRC Press, Boca Raton

    Google Scholar 

  64. Zagal J, Paez M, Tanaka AA, Dossantos JR, Linkous CA (1992) J Electroanal Chem 339:13–30

    Article  CAS  Google Scholar 

  65. Yamazaki SI, Yamada Y, Ioroi T, Fujiwara N, Siroma Z, Yasuda K, Miyazaki Y (2005) J Electroanal Chem 576:253–259

    Article  CAS  Google Scholar 

  66. Sepa DB, Vojnovic MV, Damjanovic A (1980) Electrochim Acta 25:1491–1496

    Article  CAS  Google Scholar 

  67. Alexeyeva N, Tammeveski K, Lopez Cudero A, Solla-Gullon J, Feliu JM (2010) Electrochim Acta 55:794–803

    Article  CAS  Google Scholar 

  68. Mo Z, Liao S, Zheng Y, Fu Z (2012) Carbon 50:2620–2627

    Article  CAS  Google Scholar 

  69. Gojković SL, Gupta S, Savinell RF (1998) J Electrochem Soc 145:3493–3499

    Article  Google Scholar 

  70. Qing L, Shi J, Ma C, Fan M, Bai Z, Chen Z, Qiao J, Zhang J (2014) J Power Sources 266:88–98

Download references

Acknowledgments

This research was financially supported by institutional research funding (IUT20-16 and IUT02-24) and by the project TK117T of the Estonian Ministry of Education and Research and by the Estonian Research Council (Grant No. 9323).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaido Tammeveski.

Additional information

This paper is dedicated to Professor José H. Zagal on the occasion of his 65th birthday and in recognition of his contribution to electrochemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaare, K., Kruusenberg, I., Merisalu, M. et al. Electrocatalysis of oxygen reduction on multi-walled carbon nanotube supported copper and manganese phthalocyanines in alkaline media. J Solid State Electrochem 20, 921–929 (2016). https://doi.org/10.1007/s10008-015-2990-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2990-9

Keywords

Navigation