Skip to main content
Log in

Evaluation of carbon-supported copper phthalocyanine (CuPc/C) as a cathode catalyst for fuel cells using Nafion as an electrolyte

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Carbon-supported copper phthalocyanine (CuPc/C) nanoclusters, as a novel suitable cathode catalyst in polymer electrolyte membrane fuel cells, have been synthesized via a combined solvent impregnation and milling procedure along with high-temperature treatment. For optimizing the electrocatalytic activity of the catalyst obtained, the electrode with varying Nafion ionomer contents in the catalyst layer was screened by cyclic voltammetry and linear sweep voltammetry employing a rotating disk electrode technique to investigate the effect of Nafion ionomer as for alkaline electrolyte. For comparative purposes, electrode with various contents of available anion-ionomer was also investigated. The results revealed that the content of Nafion ionomer can affect the oxygen reduction reaction activity of the CuPc/C catalyst and an optimal content of Nafion ionomer was around 3.5 × 101 μg cm−2, which corresponds well with the electrode prepared using available anion-ionomer. The electrode prepared using Nafion ionomer can produce a comparable performance to that of using available anion-ionomer, giving an onset potential at 0.1 V with a half-wave potential of −0.03 V. Furthermore, Koutechy–Levich analysis showed that the value of electron transfer number is in the range of 3.40 to 3.74 when using electrode with varying Nafion ionomer contents from 2.5 × 101 to 1.6 × 102 μg cm−2. The membrane electrode assembly fabricated with the CuPc/C cathode catalyst with a loading of 3.6 mg cm−2 and a Nafion membrane immersed in 3 M KOH for 48 h produced a power density of 3.8 mW cm−2 at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Colón-Mercado HR, Popov BN (2006) J Power Sources 155:253

    Article  Google Scholar 

  2. Song CJ, Zhang L, Zhang JJ (2006) J Electroanal Chem 293:587

    Google Scholar 

  3. Xu L, Qiao JL, Ding L, Ho LY, Liu LL, Wang HJ (2011) Acta Phys Chim Sin 27:2251

    CAS  Google Scholar 

  4. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Science 323:760

    Article  CAS  Google Scholar 

  5. Kim JH, Ishihara A, Mitsushima S, Kamiya N, Ota KI (2007) Electrochim Acta 52:2492

    Article  CAS  Google Scholar 

  6. Lee K, Ishihara A, Mitsushima S, Kamiya N, Ota KI (2004) Electrochim Acta 49:3479

    Article  CAS  Google Scholar 

  7. Lefevre M, Dodelet JP (2003) Electrochim Acta 48:2749

    Article  CAS  Google Scholar 

  8. Baker R, Willkinson DP, Zhang J (2008) Electrochim Acta 53:6906

    Article  CAS  Google Scholar 

  9. Cheng R, Li H, Chu D, Wang G (2009) J Phys Chem C 113:20689

    Article  Google Scholar 

  10. Nabae Y, Moriya S, Matsubayashi K, Lyth SM, Malon M, Wu L, Islam NM, Koshigoe Y, Kuroki S, Kakimoto M, Miyata S, Ozaki JI (2010) Carbon 48:2613

    Article  CAS  Google Scholar 

  11. Lu Y, Reddy RG (2007) Electrochim Acta 52:2562

    Article  CAS  Google Scholar 

  12. Ozaki J, Tanifuji S, Kimura N, Furuichi A, Oya A (2006) Carbon 44:1298

    Article  Google Scholar 

  13. Sehlotho N, Nyokong T (2006) J Electroanal Chem 595:161

    Article  CAS  Google Scholar 

  14. Yu EH, Scott K (2004) J Power Sources 137:248

    Article  CAS  Google Scholar 

  15. Coutanceau C, Demarconnay L, Lamy C, Léger JM (2006) J Power Sources 156:14

    Article  CAS  Google Scholar 

  16. Scott K, Yu E, Vlachogiannopoulos G, Shivare M, Duteanu N (2008) J Power Sources 175:452

    Article  CAS  Google Scholar 

  17. Bunazawa H, Yamazaki Y (2008) J Power Sources 182:48

    Article  CAS  Google Scholar 

  18. Li YS, Zhao TS, Liang ZX (2009) J Power Sources 190:223

    Article  CAS  Google Scholar 

  19. Mo Y, Sarangapani S, Le A, Scherson DA (2002) J Electroanal Chem 538–539:35

    Google Scholar 

  20. Schmidt TJ, Gasteiger HA, Stab GD, Urban PM, Kolb DM, Behm RJ (1998) J Electrochem Soc 145:2354

    Article  CAS  Google Scholar 

  21. Shan JN, Pickup PG (2000) Electrochim Acta 46:119

    Article  CAS  Google Scholar 

  22. He QG, Yang XF, Ren XM, Koel BE, Ramaswamy N, Mukerjee S, Kostecki R (2011) J Power Sources 196:7404

    Article  CAS  Google Scholar 

  23. Ding L, Qiao JL, Dai XF, Zhang J, Zhang JJ, Tian BL (2012) Int J Hydrog Energy 37:14103

    Article  CAS  Google Scholar 

  24. Zhu H, Li X, Wang F (2011) Int J Hydrog Energy 36:9151

    Article  CAS  Google Scholar 

  25. Sakar A, Manthiram A (2010) J Phys Chem C 114:4725

    Article  Google Scholar 

  26. Wang R, Li H, Feng H, Wang H, Lei Z (2010) J Power Sources 195:1099

    Article  CAS  Google Scholar 

  27. Rao CV, Viswanathan B (2007) J Phys Chem C 111:16538

    Article  CAS  Google Scholar 

  28. Bard AJ, Faulkner LR (2000) Electrochemical methods, fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  29. Baturina OA, Wnek GE (2005) Electrochem Solid-State Lett 8:A267

    Article  CAS  Google Scholar 

  30. Haug AT, White RE (2000) J Electrochem Soc 147:980

    Article  CAS  Google Scholar 

  31. Isaacs M, Aguirre MJ, Toro-Labbé A, Costamagna J, Páez M, Zagal JH (1998) Electrochim Acta 43:1821

    Article  CAS  Google Scholar 

  32. Kruusenberg I, Matisen L, Shah Q, Kannan AM, Tammeveski K (2012) Int J Hydrog Energy 37:4406

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (21173039), Specialized Research Fund for the Doctoral Program of Higher Education, SRFD (20110075110001), Opening Foundation of Zhejing Provincial Top Key Discipline (20110927), and Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, China (20110927). All financial support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinli Qiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, L., Xin, Q., Dai, X. et al. Evaluation of carbon-supported copper phthalocyanine (CuPc/C) as a cathode catalyst for fuel cells using Nafion as an electrolyte. Ionics 19, 1415–1422 (2013). https://doi.org/10.1007/s11581-013-0869-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-0869-2

Keywords

Navigation