Skip to main content
Log in

Bifunctional effects of carbon coating on high-capacity Li1.2Ni0.13Co0.13Mn0.54O2 cathode for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Coating the Li-rich layered oxide cathode Li1.2Ni0.13Co0.13Mn0.54O2 with small amount of conductive carbon is realized by low-temperature sucrose carbonization in air. Carbon coating gives rise to a small amount of Mn3+ on the surface of the Li1.2Ni0.13Co0.13Mn0.54O2. The 1.2 wt% carbon-coated Li1.2Ni0.13Co0.13Mn0.54O2 shows obviously enhanced electrochemical performances, especially in improving rate capability and suppressing the voltage fading during long-term and high-rate cycling. According to the analysis from cyclic voltammetry (CV) and electrochemical impedance spectra (EIS), the improvements on the electrochemical performances are mainly because the coated carbon layer can function by not only increasing the electronic conductivity at the interface with electrolyte but also improving bulk electronic and ionic conductivity by small amounts of Mn3+. Therefore, carbon coating is a promising approach to improve the cyclic stability of the Li-rich layered oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yang J, Cheng F, Zhang X, Gao H, Tao Z, Chen J (2014) Porous 0.2Li2MnO3 · 0.8LiNi0.5Mn0.5O2 nanorods as cathode materials for lithium-ion batteries. J Mater Chem A 2:1636–1640

    Article  CAS  Google Scholar 

  2. Yabuuchi N, Yoshii K, Myung S-T, Nakai I, Komaba S (2011) Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3–LiCo1/3Ni1/3Mn1/3O2. J Am Chem Soc 133:4404–4419

    Article  CAS  Google Scholar 

  3. Cheng F, Xin Y, Chen J, Lu L, Zhang X, Zhou H (2013) Monodisperse Li1.2Mn0.6Ni0.2O2 microspheres with enhanced lithium storage capability. J Mater Chem A 1:5301–5308

    Article  CAS  Google Scholar 

  4. Jung YS, Lu P, Cavanagh AS, Ban C, Kim G-H, Lee S-H, George SM, Harris SJ, Dillon AC (2013) Unexpected improved performance of ALD coated LiCoO2/Graphite Li-ion batteries. Adv Energy Mater 3:213–219

    Article  CAS  Google Scholar 

  5. Prada E, Domenico DD, Creff Y, Bernard J, Moynot VS, Huet F (2012) Simplified electrochemical and thermal model of LiFePO4-graphite Li-ion batteries for fast charge applications. J Electrochem Soc 159:A1508–A1519

    Article  CAS  Google Scholar 

  6. Penki TR, Shanmughasundaram D, Jeyaseelan AV, Subramani AK, Munichandraiah N (2014) Polymer template assisted synthesis of porous Li1.2Mn0.53Ni0.13Co0.13O2 as a high capacity and high rate capability positive electrode material. J Electrochem Soc 161:A33–A39

    Article  CAS  Google Scholar 

  7. Jiang Y, Yang Z, Luo W, Hu X-L, Zhang W-X, Huang Y-H (2012) Facile synthesis of mesoporous 0.4Li2MnO3 · 0.6LiNi2/3Mn1/3O2 foams with superior performance for lithium-ion batteries. J Mater Chem 22:14964–14969

    Article  CAS  Google Scholar 

  8. Thackeray MM, Kang S-H, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for high energy lithium-ion batteries. J Mater Chem 17:3112–3125

    Article  CAS  Google Scholar 

  9. Johnson CS, Li N, Lefief C, Thackeray MM (2007) Anomalous capacity and cycling stability of xLi2MnO3 · (1 − x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50 °C. Electrochem Commun 9:787–795

    Article  CAS  Google Scholar 

  10. Liu J, Manthiram A (2010) Functional surface modifications of a high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode. J Mater Chem 20:3961–3967

    Article  CAS  Google Scholar 

  11. Hy S, Felix F, Rick J, Su W-N, Hwang BJ (2014) Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[Ni(x)Li((1 − 2x)/3)Mn((2 − x)/3)]O2 (0 ≤ x ≤ 0.5). J Am Chem Soc 136:999–1007

    Article  CAS  Google Scholar 

  12. Meng H, Jin H, Gao J, Zhang L, Xu Q (2014) Pr6O11-coated high capacity layered Li[Li0.17Ni0.17Co0.10Mn0.56]O2 as a cathode material for lithium ion batteries. J Electrochem Soc 161:A1564–A1571

    Article  CAS  Google Scholar 

  13. Zhang HZ, Qiao QQ, Li GR, Ye SH, Gao XP (2012) Surface nitridation of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as cathode material for lithium-ion battery. J Mater Chem 22:13104–13109

    Article  CAS  Google Scholar 

  14. Martha SK, Nanda J, Veith GM, Dudney NJ (2012) Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. J Power Sources 199:220–226

    Article  CAS  Google Scholar 

  15. Li ZD, Zhang YC, Xiang HF, Ma XH, Yuan QF, Wang QS, Chen CH (2013) Trimethyl phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode. J Power Sources 240:471–475

    Article  CAS  Google Scholar 

  16. Wu Y, Manthiram A (2006) High capacity, surface-modified layered Li[Li(1 − x)/3Mn(2 − x)/3Ni x/3Co x/3]O2 cathodes with low irreversible capacity loss. Electrochem Solid State Lett 9:A221–A224

    Article  CAS  Google Scholar 

  17. Yuan W, Zhang HZ, Liu Q, Li GR, Gao XP (2014) Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with CeO2 as cathode material for Li-ion batteries. Electrochim Acta 135:199–207

    Article  CAS  Google Scholar 

  18. Amalraj F, Talianker M, Markovsky B, Burlaka L, Leifer N, Goobes G, Erickson EM, Haik O, Grinblat J, Zinigrad E, Aurbach D, Lampert JK, Shin J-Y, Dobrick MS, Garsuch A (2013) Studies of Li and Mn-rich Li x [MnNiCo]O2 electrodes: electrochemical performance, structure, and the effect of the aluminum fluoride coating. J Electrochem Soc 160:A2220–A2233

    Article  CAS  Google Scholar 

  19. Liu J, Wang Q, Jayan BR, Manthiram A (2010) Carbon-coated high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes. Electrochem Commun 12:750–753

    Article  CAS  Google Scholar 

  20. Shi SJ, Tu JP, Mai YJ, Zhang YQ, Gu CD, Wang XL (2012) Effect of carbon coating on electrochemical performance of Li1.048Mn0.381Ni0.286Co0.286O2 cathode material for lithium-ion batteries. Electrochim Acta 63:112–117

    Article  CAS  Google Scholar 

  21. Deng YH, Liu SQ, Liang XX (2013) Study of carbon surface-modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for high-capacity lithium ion battery cathode. J Solid State Electrochem 17:1067–1075

    Article  CAS  Google Scholar 

  22. Nayak PK, Grinblat J, Levi M, Aurbach D (2014) Electrochemical and structural characterization of carbon coated Li1.2Mn0.56Ni0.16Co0.08O2 and Li1.2Mn0.6Ni0.2O2 as cathode materials for Li-ion batteries. Electrochim Acta 137:546–556

    Article  CAS  Google Scholar 

  23. Oh SW, Myung S-T, Oh S-M, Oh KH, Amine K, Scrosati B, Sun Y-K (2010) Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries. Adv Mater 22:4842–4845

    Article  CAS  Google Scholar 

  24. Lee S, Cho Y, Song H-K, Lee KT, Cho J (2012) Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries. Angew Chem Int Ed 51:8748–8752

    Article  CAS  Google Scholar 

  25. Patey TJ, Büchel R, Ng SH, Krumeich F, Pratsinis SE, Novák P (2009) Flame co-synthesis of LiMn2O4 and carbon nanocomposites for high power batteries. J Power Sources 189:149–154

    Article  CAS  Google Scholar 

  26. Yang T, Zhang N, Lang Y, Sun K (2011) Enhanced rate performance of carbon-coated LiNi0.5Mn1.5O4 cathode material for lithium ion batteries. Electrochim Acta 56:4058–4064

    Article  CAS  Google Scholar 

  27. Sinha NN, Munichandraiah N (2009) Synthesis and characterization of carbon-coated LiNi1/3Co1/3Mn1/3O2 in a single step by an inverse microemulsion route. ACS Appl Mater Inter 1:1241–1249

    Article  CAS  Google Scholar 

  28. Zheng JM, Li J, Zhang ZR, Guo XJ, Yang Y (2008) The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Solid State Ionics 179:1794–1799

    Article  CAS  Google Scholar 

  29. Wu Y, Murugan AV, Manthiram A (2008) Surface modification of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes by AlPO4. J Electrochem Soc 155:A635–A641

    Article  CAS  Google Scholar 

  30. Song B, Lai MO, Liu Z, Liu H, Li L (2013) Graphene-based surface modification on layered Li-rich cathode for high-performance Li-ion batteries. J Mater Chem A 1:9954–9965

    Article  CAS  Google Scholar 

  31. Kunduraci M, Sharab JA, Amatucci G (2006) High-power nanostructured LiMn2-xNixO4 high-voltage lithium-ion battery electrode materials: electrochemical impact of electronic conductivity and morphology. Chem Mater 18:3585–3592

    Article  CAS  Google Scholar 

  32. Bettge M, Li Y, Gallagher K, Zhu Y, Wu Q, Lu W, Bloom I, Abraham DP (2013) Voltage fade of layered oxides: its measurement and impact on energy density. J Electrochem Soc 160:A2046–A2055

    Article  CAS  Google Scholar 

  33. Zheng JM, Gu M, Genc A, Xiao J, Xu P, Chen XL, Zhu ZH, Zhao WB, Pullan L, Wang CM, Zhang J-G (2014) Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution. Nano Lett 14:2628–2635

    Article  CAS  Google Scholar 

  34. Bloom I, Trahey L, Abouimrane A, Belharouak I, Zhang X, Wu Q, Lu W, Abrahama DP, Bettge M, Elam JW, Meng X, Burrell AK, Ban C, Tenent R, Nanda J, Dudney N (2014) Effect of interface modifications on voltage fade in 0.5Li2MnO3 · 0.5 LiNi0.375Mn0.375Co0.25O2 cathode materials. J Power Sources 249:509–514

    Article  CAS  Google Scholar 

  35. Song B, Liu H, Liu Z, Xiao P, Lai MO, Lu L (2013) High rate capability caused by surface cubic spinels in Li-rich layer-structured cathodes for Li-ion batteries. Sci Rep 3:3094–3105

    Google Scholar 

  36. Croy JR, Kim D, Balasubramanian M, Gallagher K, Kang S-H, Thackeray MM (2012) Countering the voltage decay in high capacity xLi2MnO3 · (1 − x)LiMO2 electrodes (M = Mn, Ni, Co) for Li+-ion batteries. J Electrochem Soc 159:A781–A790

    Article  CAS  Google Scholar 

  37. Rui XH, Ding N, Liu J, Li C, Chen CH (2010) Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim Acta 55:2384–2390

    Article  CAS  Google Scholar 

  38. Wu X, Li H, Fei H, Zheng C, Wei M (2014) Facile synthesis of Li2MnO3 nanowires for lithium-ion battery cathodes. New J Chem 38:584–587

    Article  CAS  Google Scholar 

  39. Yang X, Wang X, Wei Q, Shu H, Liu L, Yang S, Hu B, Song Y, Zou G, Hu L, Yi L (2012) Synthesis and characterization of a Li-rich layered cathode material Li1.15[(Mn1/3Ni1/3Co1/3)0.5(Ni1/4Mn3/4)0.5]0.85O2 with spherical core-shell structure. J Mater Chem 22:19666–19672

    Article  CAS  Google Scholar 

  40. Bettge M, Li Y, Sankaran B, Rago ND, Spila T, Haasch RT, Petrov I, Abrahama DP (2013) Improving high-capacity Li1.2Ni0.15Mn0.55Co0.1O2-based lithium-ion cells by modifying the positive electrode with alumina. J Power Sources 233:346–357

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Science Foundation of China (grant nos. 21006033 and 51372060) and the Fundamental Research Funds for the Central Universities (2013HGCH0002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. F. Xiang or Y. C. Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J.J., Li, Z.D., Xiang, H.F. et al. Bifunctional effects of carbon coating on high-capacity Li1.2Ni0.13Co0.13Mn0.54O2 cathode for lithium-ion batteries. J Solid State Electrochem 19, 1027–1035 (2015). https://doi.org/10.1007/s10008-014-2707-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2707-5

Keywords

Navigation