Skip to main content
Log in

Influence of multistep sintering method on electrochemical performances of 7LiFePO4·Li3V2(PO4)3/C composite cathode material for lithium ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, influence of multistep sintering method on electrochemical performances of 7LiFePO4·Li3V2(PO4)3/C composite cathode material for lithium ion batteries has been researched in detail, and a 7LiFePO4·Li3V2(PO4)3/C cathode composite material with excellent cycling stability and rate capability is successfully synthesized. X-ray diffraction and scanning electron microscope analysis results demonstrate that the multistep sintering method has significant effect on the crystal structure and surface morphology of the synthesized materials. Cycle voltammetry, electrochemical impedance spectroscopy, and charge/discharge test are further carried out to investigate the influence of the sintering time on the electrochemical performances of the cathode materials. The electrochemical analysis results indicate that, when sintered at 650 °C for 12 h and then 750 °C for 4 h, the cathode material 7LiFePO4·Li3V2(PO4)3/C shows the most excellent electrochemical performances. It exhibits a good rate capability with the initial discharge specific capacities of 162.8, 149.8, and 122.2 mAh g−1 at 1, 2, and 5 C, respectively. Moreover, after a total of 150 cycles at different rates, this cathode material still maintains an excellent cycling stability without significant capacity fading, in which it can deliver the discharge specific capacities of 160.8, 146.9, and 120.6 mAh g−1 after 50 cycles at 1, 2, and 5 C, while the capacity retentions can reach to 98.8, 98.1, and 98.7 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  2. Prosini PP, Carewska M, Scaccia S, Wisniewski P, Passerini S, Pasquali M (2002) J Electrochem Soc 149:A886–A890

    Article  CAS  Google Scholar 

  3. Shim J, Striebel KA (2003) J Power Sources 955:119–121

    Google Scholar 

  4. Wang F, Zhang Y, Chen C (2013) J Nanosci Nanotechnol 13:1535–1538

    Article  CAS  Google Scholar 

  5. Zhang XP, Guo HJ, Li XH, Wang ZX, Wu L (2012) Solid State Ionics 212:106–111

    Article  Google Scholar 

  6. Wang LN, Li ZC, Xu HJ, Zhang KL (2008) J Phys Chem C 112:308–312

    Article  CAS  Google Scholar 

  7. Nakamura T, Miwa Y, Tabuchi M, Yamada Y (2006) J Electrochem Soc 153:A1108–A1114

    Article  CAS  Google Scholar 

  8. Huang H, Yin SC, Kerr T, Taylor N, Nazar LF (2002) Adv Mater 14:1525–1528

    Article  CAS  Google Scholar 

  9. Yin SC, Grondey H, Strobel P, Huang H, Nazar LF (2003) J Am Chem Soc 125:326–327

    Article  CAS  Google Scholar 

  10. Yang G, Liu H, Ji H, Chen Z, Jiang X (2010) Electrochim Acta 55:2951–2957

    Article  CAS  Google Scholar 

  11. Zhong SK, Wu L, Liu JQ (2012) Electrochim Acta 74:8–15

    Article  CAS  Google Scholar 

  12. Rui XH, Jin Y, Feng XY, Zhang LC, Chen CH (2011) J Power Sources 196:2109–2114

    Article  CAS  Google Scholar 

  13. Zhong SK, Wu L, Zheng JC, Liu JQ (2012) Powder Technol 219:45–48

    Article  CAS  Google Scholar 

  14. Zheng JC, Li XH, Wang ZX, Niu SS, Liu DR, Wu L, Li LJ, Li JH, Guo HJ (2010) J Power Sources 195:2935–2938

    Article  CAS  Google Scholar 

  15. Xiang JY, Tu JP, Zhang L, Wang XL, Zhou Y, Qiao YQ, Lu Y (2010) J Power Sources 195:8331–8335

    Article  CAS  Google Scholar 

  16. Zhang LL, Liang G, Ignatov A, Croft MC, Xiong XQ, Hung IM, Huang YH, Hu XL, Zhang WX, Peng YL (2011) J Phys Chem C 115:13520–13527

    Article  CAS  Google Scholar 

  17. Chen XJ, Cao GS, Zhao XB, Tu JP, Zhu TJ (2008) J Alloys Compd 463:385–389

    Article  CAS  Google Scholar 

  18. Wang YF, Zhao P, Li DL, Fan XY (2012) Rare Metal Mater Eng 41:6703–6706

    Article  Google Scholar 

  19. Zou JZ, Zhang Y, Wang F, Chen BJ, Lu C, Wang ZY (2013) J Solid State Electrochem 17:2559–2565

    Article  CAS  Google Scholar 

  20. Hong J, Wang XL, Wang Q et al (2012) J Phys Chem C 116:20787–20793

    Article  CAS  Google Scholar 

  21. Liu H, Li C, Zhang HP, Fu LJ, Wu YP, Wu HQ (2006) J Power Sources 159:717–720

    Article  CAS  Google Scholar 

  22. Padhi AK, Nanjundaswamy KS, Masquelier C, Okada GJB (1997) J Electrochem Soc 14:1609–1613

    Article  Google Scholar 

  23. Cui Y, Zhao X, Guo R (2010) Electrochim Acta 55:922–926

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (973 program no. 2013CB934700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Wu, H., Zhang, Y. et al. Influence of multistep sintering method on electrochemical performances of 7LiFePO4·Li3V2(PO4)3/C composite cathode material for lithium ion batteries. J Solid State Electrochem 19, 477–484 (2015). https://doi.org/10.1007/s10008-014-2612-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2612-y

Keywords

Navigation