Skip to main content
Log in

Simple solid-state method for synthesis of Li[Li0.20Mn0.534Ni0.133Co0.133]O2 cathode material with improved electrochemical performance in lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Layered Li[Li0.20Mn0.534Ni0.133Co0.133]O2 cathode materials for Li-ion battery were successfully prepared by a novel simple solid-state method using acetate or carbonate as a precursor under high temperature, and were then surface-modified with nanostructured alumina (Al2O3). The prepared cathode materials were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscope (SEM), transmission electron microscope (TEM), and electrochemical measurements. The XRD results show that all the cathode materials possess an α-NaFeO2 structure type with high crystallinity. SEM and TEM images reveal that the cathode materials have a monodisperse nonspherical morphology and the surface became rough but their morphology did not change very much after Al2O3 coating. XRF test proved the presence of Al2O3 in the samples after coating treatment. The electrochemical measurements exhibit that the Al2O3-coated cathode materials have a higher capability and cycling performance in lithium-ion battery than that of uncoated samples. Further, electrochemical impedance spectra (EIS) measurement shows that the Al2O3 nanoparticles on the surface of the cathode materials reduced side reactions during cycling electrode/electrolyte interface and provided a balanced electronic and Li-ion conductivity. This promising technology for making high performance electrodes would inspire the design and development of a wide range of other battery-related materials in a more eco-friendly way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yu HJ, Zhou HS (2013) J Phys Chem Lett 4:1268–1280

    Article  CAS  Google Scholar 

  2. Goodenough JB, Kim Y (2010) Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  3. Fey GTK, Chang CS, Kumar TP (2010) J Solid State Electrochem 14:17–26

    Article  Google Scholar 

  4. Zhu YM, Zhang J, Weppner W (2013) J Solid State Electrochem 17:1473–1478

    Article  CAS  Google Scholar 

  5. Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) J Mater Chem 17:3112–3125

    Article  CAS  Google Scholar 

  6. Yu HJ, Kim HJ, Wang YR, He P, Asakura D, Nakamura Y, Zhou HS (2012) Phys Chem Chem Phys 14:6584–6595

    Article  Google Scholar 

  7. Ammundsen B, Paulsen J (2001) Adv Mater 13:943–956

    Article  CAS  Google Scholar 

  8. Jiang J, Eberman KW, Krause LJ, Dahn JR (2005) J Electrochem Soc 152:A1879–A1889

    Article  CAS  Google Scholar 

  9. Johnson CS, Li NC, Lefief C, Thackeray MM (2007) Electrochem Commun 9:787–795

    Article  CAS  Google Scholar 

  10. Kang SH, Kempgens P, Greenbaum S, Kropf AJ, Amine K, Thackeray MM (2007) J Mater Chem 17:2069–2077

    Article  CAS  Google Scholar 

  11. Lu ZH, Beaulieu LY, Donaberger RA, Thomas CL, Dahn JR (2002) J Electrochem Soc 149:A778–A791

    Article  CAS  Google Scholar 

  12. Wu Y, Manthiram A (2006) Electrochem Solid State 9:A221–A224

    Article  CAS  Google Scholar 

  13. Zhang LQ, Takada K, Ohta N, Fukuda K, Sasaki T (2005) J Power Sources 146:598–601

    Article  CAS  Google Scholar 

  14. McCalla E, Rowe AW, Camardese J, Dahn JR (2013) Chem Mater 25:2716–2721

    Article  CAS  Google Scholar 

  15. Deng YH, Liu SQ, Liang XX (2013) J Solid State Electrochem 17:1067–1075

    Article  CAS  Google Scholar 

  16. Zheng JM, Zhang ZR, Wu XB, Dong ZX, Zhu Z, Yang Y (2008) J Electrochem Soc 155:A775–A782

    Article  CAS  Google Scholar 

  17. Kang SF, Li X, Zhu PY (2014 submitted) Nanoscale Res Lett

  18. Ohzuku T, Nagayama M, Tsuji K, Ariyoshi K (2011) J Mater Chem 21:10179–10188

    Article  CAS  Google Scholar 

  19. Kim SB, Lee KJ, Choi WJ, Kim WS, Jang IC, Lim HH, Lee YS (2010) J Solid State Electrochem 14:919–922

    Article  CAS  Google Scholar 

  20. Yu HJ, Zhou HS (2012) J Mater Chem 22:15507–15510

    Article  CAS  Google Scholar 

  21. Zhang B, Li LJ, Zheng JC (2012) J Alloys Compd 520:190–194

    Article  CAS  Google Scholar 

  22. Kang SH, Johnson CS, Vaughey JT, Amine K, Thackeray MM (2006) J Electrochem Soc 153:A1186–A1192

    Article  CAS  Google Scholar 

  23. Manthiram A (2011) J Phys Chem Lett 2:176–184

    Article  CAS  Google Scholar 

  24. Zheng JM, Wu XB, Yang Y (2011) Electrochim Acta 56:3071–3078

    Article  CAS  Google Scholar 

  25. Wang M, Chen YB, Wu F, Su YF, Chen L, Wang DL (2010) Electrochim Acta 55:8815–8820

    Article  CAS  Google Scholar 

  26. Kim Y, Kim HS, Martin SW (2006) Electrochim Acta 52:1316–1322

    Article  CAS  Google Scholar 

  27. Huang B, Li XH, Wang ZX, Guo HJ, Xiong XH, Wang JX (2014) J Alloys Compd 583:313–319

    Article  CAS  Google Scholar 

  28. Grieken RE, Markowicz AA (1993) Handbook of X-ray spectrometry. Marcel Dekker, New York

    Google Scholar 

  29. Havrilla GJ (1997) X-Ray Spectrom 26:364–373

    Article  CAS  Google Scholar 

  30. Van Bommel A, Krause LJ, Dahn JR (2011) J Electrochem Soc 158:A731–A735

    Article  Google Scholar 

  31. Shenouda AY, Murali K (2008) J Power Sources 176:332–339

    Article  CAS  Google Scholar 

  32. Amalraj F, Talianker M, Markovsky B, Sharon D, Burlaka L, Shafir G, Zinigrad E, Haik O, Aurbach D, Lampert J, Schulz-Dobrick M, Garsuch A (2013) J Electrochem Soc 160:A324–A337

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out with financial supports from National Natural Science Foundation of China (Grant No. 61171008 and No.21103024 ). This research was also supported by Dalian Mingjia Metal Products Limited Company, Shanghai Jubo Energy Technology Limited Company and Dunhuang Libo Science and Technology Limited Company on field and fund. We would like to thank Qianyu Zhang, Sheng Jiang and Peiyi Zhu for experimental technique support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi Li or Yangang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, S., Li, B., Qin, H. et al. Simple solid-state method for synthesis of Li[Li0.20Mn0.534Ni0.133Co0.133]O2 cathode material with improved electrochemical performance in lithium-ion batteries. J Solid State Electrochem 19, 525–531 (2015). https://doi.org/10.1007/s10008-014-2585-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2585-x

Keywords

Navigation