Skip to main content
Log in

Graphene-wrapped Ni2P materials: a 3D porous architecture with improved electrochemical performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Ni2P/graphene hybrid with a 3D architecture has been successfully accomplished through a series of controlled chemical processes. In contrast to random mixture of Ni2P nanoparticles and graphene nanosheets, the architecture hybrid exhibits superior electrochemical stability because the Ni2P nanoparticles are firmly riveted on the graphene sheets. The 3D graphene network enhances the electrical conductivity over the 2D nanostructure. As anode materials for lithium-ion batteries, the graphene-wrapped Ni2P nanoparticles can deliver a reversible capacity of ~400 mAh g−1 after 30 cycles with nearly no fading and also exhibit a good rate performance. The graphene network can serve as a conducting network for fast electron transfer from all directions between the active materials and charge collector, and better buffer spaces to accommodate the volume expansion/contraction during discharge/charge process, which can be considered to contribute to the remarkable cyclic stability, thereby pointing to a new synthetic route to hybridizing graphene with active materials for advanced lithium ion batteries.

Ni2P/graphene hybrid with a 3D architecture has been successfully accomplished through a novel synthetic route, which exhibited good electrochemical performance

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Taberna L, Mitra S, Poizot P, Simon P, Tarascon JM (2006) Nat Mater 5:567–573

    Article  CAS  Google Scholar 

  2. Zheng XM, Huang L, Xiao Y, Su H, Xu GL, Fu F, Li JT, Sun SG (2012) Chem Commun 48:6854–6856

    Article  CAS  Google Scholar 

  3. Gillot F, Boyanov S, Dupont L, Doublet ML, Morcrette A, Monconduit L, Tarascon JM (2005) Chem Mater 17:6327–6337

    Article  CAS  Google Scholar 

  4. Huang XH, Tu JP, Zhang CQ, Xiang JY (2007) Electrochem Commun 9:1180–1184

    Article  CAS  Google Scholar 

  5. Das B, Reddy MV, Rao GVS, Chowdari BVR (2011) J Solid State Electrochem 15:259–268

    Article  CAS  Google Scholar 

  6. Goodenough JB (2012) J Solid State Electrochem 16:2019–2029

    Article  CAS  Google Scholar 

  7. Manjunatha H, Suresh GS, Venkatesha TV (2011) J Solid State Electrochem 15:431–445

    Article  CAS  Google Scholar 

  8. Wu YP, Holze R (2003) J Solid State Electrochem 8:73–78

    Article  CAS  Google Scholar 

  9. Souza DCS, Pralong V, Jacobson AJ, Nazar LF (2002) Science 296:2012–2015

    Article  CAS  Google Scholar 

  10. Bichat M-P, Politova T, Pfeiffer H, Tancret F, Monconduit L, Pascal J-L, Brousse T, Favier F (2004) J Power Sources 136:80–87

    Article  CAS  Google Scholar 

  11. Cruz M, Morales J, Sanchez L, Santos-Pena J, Martin F (2007) J Power Sources 171:870–878

    Article  CAS  Google Scholar 

  12. Boyanov S, Gillot F, Monconduit L (2008) Ionics 14:125–130

    Article  CAS  Google Scholar 

  13. Boyanov S, Annou K, Villevieille C, Pelosi M, Zitoun D, Monconduit L (2008) Ionics 14:183–190

    Article  CAS  Google Scholar 

  14. Gillot F, Monconduit L, Doublet ML (2005) Chem Mater 17:5817–5823

    Article  CAS  Google Scholar 

  15. Carenco S, Surcin C, Morcrette M, Larcher D, Mezailles N, Boissiere C, Sanchez C (2012) Chem Mater 24:688–697

    Article  CAS  Google Scholar 

  16. Aso K, Hayashi A, Tatsumisago M (2011) Inorg Chem 50:10820–10824

    Article  CAS  Google Scholar 

  17. Boyanov S, Zitoun D, Menetrier M, Jumas JC, Womes M, Monconduit L (2009) J Phys Chem C 113:21441–21452

    Article  CAS  Google Scholar 

  18. Silva DCC, Crosnier O, Ouvrard G, Greedan J, Safa-Sefat A, Nazar LF (2003) Electrochem Solid-State Lett 6:A162–A165

    Article  CAS  Google Scholar 

  19. Boyanov S, Bernardi J, Gillot F, Dupont L, Womes M, Tarascon JM, Monconduit L, Doublet ML (2006) Chem Mater 18:3531–3538

    Article  CAS  Google Scholar 

  20. Gillot F, Menetrier M, Bekaert E, Dupont L, Morcrette M, Monconduit L, Tarascon JM (2007) J Power Sources 172:877–885

    Article  CAS  Google Scholar 

  21. Hwang H, Kim MG, Cho J (2007) J Phys Chem C 111:1186–1193

    Article  CAS  Google Scholar 

  22. Bekaert E, Bernardi J, Boyanov S, Monconduit L, Doublet ML, Menetrier M (2008) J Phys Chem C 112:20481–20490

    Article  CAS  Google Scholar 

  23. Cabana J, Monconduit L, Larcher D, Palacin MR (2010) Adv Energy Mater 22:E170–E192

    Article  CAS  Google Scholar 

  24. Lu Y, Tu JP, Gu CD, Wang XL, Mao SX (2011) J Mater Chem 21:17988–17997

    Article  CAS  Google Scholar 

  25. Lu Y, Tu JP, Xiang JY, Wang XL, Zhang J, Mai YJ, Mao SX (2011) J Phys Chem C 115:23760–23767

    Article  CAS  Google Scholar 

  26. Lu Y, Tu JP, Xiong QQ, Qiao YQ, Wang XL, Gu CD, Mao SX (2012) RSC Adv 2:3430–3436

    Article  CAS  Google Scholar 

  27. Lu Y, Tu JP, Xiong QQ, Qiao YQ, Zhang J, Gu CD, Wang XL, Mao SX (2012) Chem Eur J 18:6031–6038

    Article  CAS  Google Scholar 

  28. Ni YH, Jin LN, Hong JM (2011) Nanoscale 3:196–200

    Article  CAS  Google Scholar 

  29. Lu Y, Tu JP, Xiong QQ, Xiang JY, Mai YJ, Zhang J, Qiao YQ, Wang XL, Gu CD, Mao SX (2012) Adv Funct Mater 22:3927–3935

    Article  CAS  Google Scholar 

  30. Wang JZ, Zhong C, Wexler D, Idris NH, Wang ZX, Chen LQ, Liu HK (2011) Chem Eur J 17:661–667

    Article  CAS  Google Scholar 

  31. Liu JL, Jiang JB, Qian D, Tan GR, Peng SJ, Yuan HM, Luo DM, Wang QF, Liu YC (2013) RSC Adv 3:15457–15466

    Article  CAS  Google Scholar 

  32. Xin X, Zhou XF, Wang F, Yao XY, Xu XX, Zhu YM, Liu ZP (2012) J Mater Chem 22:7724–7730

    Article  CAS  Google Scholar 

  33. Rolison DR, Long JW, Lytle JC, Fischer AE, Rhodes CP, McEvoy TM, Bourg ME, Lubers AM (2009) Chem Soc Rev 38:226–252

    Article  CAS  Google Scholar 

  34. Dou YY, Li GR, Song J, Gao XP (2012) Phys Chem Chem Phys 14:1339–1342

    Article  CAS  Google Scholar 

  35. Mai YJ, Wang XL, Xiang JY, Qiao YQ, Zhang D, Gu CD, Tu JP (2011) Electrochim Acta 56:2306–2311

    Article  CAS  Google Scholar 

  36. Mai YJ, Shi SJ, Zhang D, Lu Y, Gu CD, Tu JP (2012) J Power Sources 204:155–161

    Article  CAS  Google Scholar 

  37. Sun YM, Hu XL, Luo W, Xia FF, Huang YH (2013) Adv Funct Mater 23:2436–2444

    Article  CAS  Google Scholar 

  38. Zhou GM, Wang DW, Li F, Zhang LL, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM (2010) Chem Mater 22:5306–5313

    Article  CAS  Google Scholar 

  39. Wang HL, Cui LF, Yang YA, Casalongue HS, Robinson JT, Liang YY, Cui Y, Dai HJ (2010) J Am Chem Soc 132:13978–13980

    Article  CAS  Google Scholar 

  40. Lu Y, Wang XL, Mai YJ, Xiang JY, Zhang H, Li L, Gu CD, Tu JP, Mao SX (2012) J Phys Chem C 116:22217–22225

    Article  CAS  Google Scholar 

  41. Qiu DF, Xu ZJ, Zheng MB, Zhao B, Pan LJ, Pu L, Shi Y (2012) J Solid State Electrochem 16:1889–1892

    Article  CAS  Google Scholar 

  42. Sathish M, Mitani S, Tomai T, Unemoto A, Honma I (2012) J Solid State Electrochem 16:1767–1774

    Article  CAS  Google Scholar 

  43. Wang DW, Li YQ, Wang QH, Wang TM (2012) J Solid State Electrochem 16:2095–2102

    Article  CAS  Google Scholar 

  44. Wang GL, Liu JC, Tang S, Li HY, Cao DX (2011) J Solid State Electrochem 15:2587–2592

    Article  CAS  Google Scholar 

  45. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Chem Mater 11:771–778

    Article  CAS  Google Scholar 

  46. Chiang RK, Chiang RT (2007) Inorg Chem 46:369–371

    Article  CAS  Google Scholar 

  47. Brock SL, Perera SC, Stamm KL (2004) Chem Eur J 10:3364–3371

    Article  CAS  Google Scholar 

  48. Mai YJ, Tu JP, Gu CD, Wang XL (2012) J Power Sources 209:1–6

    Article  CAS  Google Scholar 

  49. Wu Z-S, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng H-M (2010) ACS Nano 4:3187–3194

    Article  CAS  Google Scholar 

  50. Yan J, Wei T, Shao B, Ma FQ, Fan ZJ, Zhang ML, Zheng C, Shang YC, Qian WZ, Wei F (2010) Carbon 48:1731–1737

    Article  CAS  Google Scholar 

  51. Jiang ZQ, Zhao XS, Fu YZ, Manthiram A (2012) J Mater Chem 22:24862–24869

    Article  CAS  Google Scholar 

  52. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for Innovative Research Team in University of Ministry of Education of China (IRT13037), the Key Science and Technology Innovation Team of Zhejiang Province (2010R50013), and the opening foundation of Zhejiang Provincial Top Key Discipline (20110936). The authors also thank the help of Dr. Li’na Wang (Zhejiang Sci-Tech University) for operating the TEM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. L. Wang or J. P. Tu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Wang, X.L., Ge, X. et al. Graphene-wrapped Ni2P materials: a 3D porous architecture with improved electrochemical performance. J Solid State Electrochem 18, 2245–2253 (2014). https://doi.org/10.1007/s10008-014-2474-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2474-3

Keywords

Navigation