Skip to main content
Log in

Nano-composites SnO(VO x ) as anodes for lithium ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nano-composites of SnO(V2O3) x (x = 0, 0.25, and 0.5) and SnO(VO)0.5 are prepared from SnO and V2O3/VO by high-energy ball milling (HEB) and are characterized by X-ray diffraction (XRD), scanning electron microscopy, and high-resolution transmission electron microscopy techniques. Interestingly, SnO and SnO(VO)0.5 are unstable to HEB and disproportionate to Sn and SnO2, whereas HEB of SnO(V2O3) x gives rise to SnO2.VO x . Galvanostatic cycling of the phases is carried out at 60 mA g−1 (0.12 C) in the voltage range 0.005–0.8 V vs. Li. The nano-SnO(V2O3)0.5 showed a first-charge capacity of 435 (±5) mAh g−1 which stabilized to 380 (±5) mAh g−1 with no noticeable fading in the range of 10–60 cycles. Under similar cycling conditions, nano-SnO (x = 0), nano-SnO(V2O3)0.25, and nano-SnO(VO)0.5 showed initial reversible capacities between 630 and 390 (±5) mAh g−1. Between 10 and 50 cycles, nano-SnO showed a capacity fade as high as 59%, whereas the above two VO x -containing composites showed capacity fade ranging from 10% to 28%. In all the nano-composites, the average discharge potential is 0.2–0.3 V and average charge potential is 0.5–0.6 V vs. Li, and the coulombic efficiency is 96–98% after 10 cycles. The observed galvanostatic cycling, cyclic voltammetry, and ex situ XRD data are interpreted in terms of the alloying–de-alloying reaction of Sn in the nano-composite “Sn-VO x -Li2O” with VO x acting as an electronically conducting matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nazri G-A, Pistoia G (eds) (2003) Lithium batteries: science and technology. Kluwer Academic, New York

    Google Scholar 

  2. Arico AS, Bruce P, Scrosati B, Tarascon J-M, Schalkwijk WV (2005) Nat Mater 4:366

    Article  CAS  Google Scholar 

  3. Shukla AK, Kumar TP (2008) Curr Sci (India) 94:314

    CAS  Google Scholar 

  4. Ma H, Cheng F, Chen J, Zhao J, Li C, Tao Z, Liang J (2007) Adv Mater 19:4067

    Article  CAS  Google Scholar 

  5. Bruce PG, Scrosati B, Tarascon J-M (2008) Angew Chem Int Ed 47:2930

    Article  CAS  Google Scholar 

  6. Kim MG, Cho J (2009) J Electrochem Soc 156:A277

    Article  CAS  Google Scholar 

  7. Kim H, Han B, Choo J, Cho J (2008) Angew Chem Int Ed 47:10151

    Article  CAS  Google Scholar 

  8. Larcher D, Beattie S, Morcrette M, Edström K, Jumas J-C, Tarascon J-M (2007) J Mater Chem 17:3759

    Article  CAS  Google Scholar 

  9. Aurbach D, Nimberger A, Markovsky B, Levi E, Sominski E, Gedanken A (2002) Chem Mater 14:4155

    Article  CAS  Google Scholar 

  10. Kim C, Noh M, Choi M, Cho J, Park B (2005) Chem Mater 17:3297

    Article  CAS  Google Scholar 

  11. Park M-S, Kang Y-M, Wang G-X, Dou S-X, Liu H-K (2008) Adv Funct Mater 18:455

    Article  CAS  Google Scholar 

  12. Sharma Y, Sharma N, Subba Rao GV, Chowdari BVR (2008) Chem Mater 20:6829

    Article  CAS  Google Scholar 

  13. Huang F, Yuan Z, Zhan H, Zhou Y, Sun J (2003) Mater Lett 57:3341

    Article  CAS  Google Scholar 

  14. Courtney IA, Dahn JR (1997) J Electrochem Soc 144:2045

    Article  CAS  Google Scholar 

  15. Li H, Huang X, Chen L (1999) Solid State Ionics 123:189

    Article  CAS  Google Scholar 

  16. Uchiyama H, Hosono E, Honma I, Zhou H, Imai H (2008) Electrochem Commun 10:52

    Article  CAS  Google Scholar 

  17. Wang X, Wen Z, Yang X, Lin B (2008) Solid State Ionics 179:1238

    Article  CAS  Google Scholar 

  18. Yang J, Takeda Y, Imanishi N, Xie JY, Yamamoto O (2001) J Power Sources 97–98:216

    Article  Google Scholar 

  19. Ning J, Dai Q, Jiang T, Men K, Liu D, Xiao N, Li C, Li D, Liu B, Zou B, Zou G, Yu WW (2009) Langmuir 25:1818

    Article  CAS  Google Scholar 

  20. Chen MH, Huang ZC, Wu GT, Zhu GM, You JK, Lin ZG (2003) Mater Res Bull 38:831

    Article  CAS  Google Scholar 

  21. Reddy MV, Subba Rao GV, Chowdari BVR (2008) In: Chowdari BVR et al (eds) ‘Solid state ionics: New materials for pollution free energy devices’ [Proceedings of the 11th Asian conf. on solid state ionics]. MacMillan, India, New Delhi, pp 187–193

    Google Scholar 

  22. Park C-M, Chang W-S, Jung H, Kim J-H, Sohn H-J (2009) Electrochem Commun 11:2165

    Article  CAS  Google Scholar 

  23. Allimi BS, Alpay SP, Xie CK, Wells BO, Budnick JI, Pease DM (2008) Appl Phys Lett 92:202105

    Article  Google Scholar 

  24. Grygiel C, Pautrat A, Rodière P (2009) Phys Rev B 79:235111

    Article  Google Scholar 

  25. Rivadulla F, Rossier JF, Hernández MG, Quintela MAL, Rivas J, Goodenough JB (2007) Phys Rev B 76:205110

    Article  Google Scholar 

  26. Das B, Reddy MV, Krishnamoorthi C, Tripathy S, Mahendiran R, Subba Rao GV, Chowdari BVR (2009) Electrochim Acta 54:3360

    Article  CAS  Google Scholar 

  27. Das B, Reddy MV, Subba Rao GV, Chowdari BVR (2008) J Solid State Electrochem 12:953

    Article  CAS  Google Scholar 

  28. Moreno MS, Punte G, Rigotti G, Mercader RC, Weisz AD, Blesa MA (2001) Solid State Ionics 144:81

    Article  CAS  Google Scholar 

  29. Lee K-M, Lee Y-S, Kim Y-W, Sun Y-K, Lee S-M (2009) J Alloys Compd 472:461

    Article  CAS  Google Scholar 

  30. Wachtler M, Besenhard JO, Winter M (2001) J Power Sources 94:189

    Article  CAS  Google Scholar 

  31. Courtney IA, Tse JS, Mao O, Hafner J, Dahn JR (1998) Phys Rev B 58:15583

    Article  CAS  Google Scholar 

  32. Park C-M, Sohn H-J (2009) Electrochim Acta 54:6367

    Article  CAS  Google Scholar 

  33. Hassoun J, Derrien G, Panero S, Scrosati B (2008) Adv Mater 20:3169

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Part of the work is supported by Defence Advanced Research Projects Agency (DARPA), USA (Grant no. R-144-000-226-597) and Ministry of Education (MOE), Singapore (Grant no. WBS-R-284-000-076-112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. R. Chowdari.

Additional information

Dedicated to Prof. R. Schöllhorn on his 75th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, B., Reddy, M.V., Subba Rao, G.V. et al. Nano-composites SnO(VO x ) as anodes for lithium ion batteries. J Solid State Electrochem 15, 259–268 (2011). https://doi.org/10.1007/s10008-010-1126-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1126-5

Keywords

Navigation