Skip to main content

Advertisement

Log in

Graphene anchored with mesoporous NiO nanoplates as anode material for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Graphene is an excellent substrate to load nanomaterials for energy applications due to its large surface area, excellent conductivity, mechanical strength, and chemical stability. In this study, thermal exfoliated functionalized graphene sheets with good conductivity and high BET surface area are anchored with mesoporous NiO nanoplates by in situ chemical synthesis approach. Electrochemical characterization shows that functionalized graphene sheets–NiO sample exhibits a high capacity of about 700 mAh/g at a discharge current density of 100 mA/g and a good cycling ability. The high capacity and good cycling ability of functionalized graphene sheets –NiO material were attributed to the intimate interaction between the graphene sheets and NiO nanoplates. The graphene sheets not only enhance the conductivity of NiO nanoplates but also improve the structure stability of NiO nanoplates. Furthermore, the mesoporous structure of NiO nanoplates is available to the transfer of electrolyte. Such functionalized graphene sheets–NiO nanocomposite could be a promising candidate material for a high-capacity, low cost, and nontoxic anode for lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FGS:

Functionalized graphene sheets

Reference

  1. Armand M, Tarascon JM (2008) Nature 451:652–657

    Article  CAS  Google Scholar 

  2. Ellis BL, Lee KT, Nazar LF (2010) Chem Mater 22:691–714

    Article  CAS  Google Scholar 

  3. Scrosati B, Garche J (2010) J Power Sources 195:2419–2430

    Article  CAS  Google Scholar 

  4. Li WY, Xu LN, Chen J (2005) Adv Funct Mater 15:851–857

    Article  CAS  Google Scholar 

  5. Meduri P, Pendyala C, Kumar V, Sumanasekera GU, Sunkara MK (2009) Nano Lett 9:612–616

    Article  CAS  Google Scholar 

  6. Wu CZ, Yin P, Zhu X, Yang CZO, Xie Y (2006) J Phys Chem B 110:17806–17812

    Article  CAS  Google Scholar 

  7. Varghese B, Reddy MV, Wu ZY, Lit CS, Rao HTC, Chowdari BV, Wee ATS, Lim CT, Sow CH (2008) Chem Mater 20:3360–3367

    Article  CAS  Google Scholar 

  8. Boukamp BA, Lesh GC, Huggins RA (1981) J Electrochem Soc 128:725–730

    Article  CAS  Google Scholar 

  9. Wang HL, Casalongue HS, Liang YY, Dai HJ (2010) J Am Chem Soc 132:7472–7477

    Article  CAS  Google Scholar 

  10. Du QL, Zheng MB, Zhang LF, Wang YW, Chen JH, Xue LP, Dai WJ, Ji GB, Cao JM (2010) Electrochim Acta 55:3897–3903

    Article  CAS  Google Scholar 

  11. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  12. Liu PG, Gong KC, Xiao P, Xiao M (2000) J Mater Chem 10:933–935

    Article  CAS  Google Scholar 

  13. Howatt G, Breckenridge R, Brownlow J (1947) J Am Ceram Soc 30:237–242

    Article  CAS  Google Scholar 

  14. Huang XH, Tu JP, Zhang CQ, Zhou F (2010) Electrochim Acta 16:8981–8985

    Article  Google Scholar 

  15. Derrien G, Hassoun J, Panero S, Scrosati B (2007) Adv Mater 19:2336–2340

    Article  CAS  Google Scholar 

  16. Ban CM, Wu ZC, Gillaspie DT, Chen L, Yan YF, Blackburn JL, Dillon AC (2010) Adv Mater 22:E145–E149

    Article  CAS  Google Scholar 

  17. Guo P, Song HH, Chen XH (2009) Electrochem Commun 11:1320–1324

    Article  CAS  Google Scholar 

  18. Rahman MM, Chou SL, Zhong C, Wang JZ, Wexler D, Liu HK (2010) Solid State Ionics 180:1646–1651

    Article  CAS  Google Scholar 

  19. Zhou GM, Wang DW, Li F, Zhang LL, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM (2010) Chem Mater 22:5306–5313

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by China Postdoctoral Science Foundation (No. 20100471296), Postdoctoral Foundation of Jiangsu Province (No. 1001003C), Nature Science Foundation of Jiangsu Province (No. BK2007146), and National Nature Science Foundation of China (No. 60928009 and 60990314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingbo Zheng.

Additional information

Danfeng Qiu and Zijing Xu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, D., Xu, Z., Zheng, M. et al. Graphene anchored with mesoporous NiO nanoplates as anode material for lithium-ion batteries. J Solid State Electrochem 16, 1889–1892 (2012). https://doi.org/10.1007/s10008-011-1466-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1466-9

Keywords

Navigation