Skip to main content

Advertisement

Log in

Effects of constant voltage at low potential on the formation of LiMnO2/graphite lithium ion battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of formation protocol including different constant voltage points at low potential, different constant voltage time, and different current were studied in this paper. The electrochemical impedance spectroscopy and stored and cycle performance tests were used to verify the parameter of different formation protocols. The results show that the resistance of solid electrolyte interphase film R f drops during the whole potential range except 3.1 to 3.5 V and the diffusion coefficient P f which represents the uniformity of anode electrode surface decreases only at this potential range. The effects of different constant voltage points at 3.1 to 3.5 V were studied to increase the uniformity of anode electrode surface and decrease the resistance of the SEI film. The film is more stable at 3.3 V constant voltage than other potentials, and a constant voltage 60 min is enough to form a uniformity and compact passivation layer. With the constant voltage time extending, the P f decreases. When the formation current to constant potential is increased, the film is more loose (or porous) and less adhesive. The formation protocol of 0.01 C to 3.3 V constant voltage 60 min shows the best cycling performance, and formation protocol of no constant voltage shows the worst cycling performance. Considering the time and energy consumption, the formation protocol of 0.05 C to 3.3-V constant voltage 60 min is the best.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Verma P, Maire P, Novák P (2010) Electrochim Acta 55:6332–6341

    Article  CAS  Google Scholar 

  2. Aurbach D, Levi MD, Levi E, Schechter A (1997) J Phys Chem B 101:2195–2206

    Article  CAS  Google Scholar 

  3. Ohzuku T, Iwakoshi Y, Sawai K (1993) J Electrochem Soc 140:2490–2498

    Article  CAS  Google Scholar 

  4. Peled E, Golodnitsky D, Ardel G (1997) J Electrochem Soc 144:L208–L210

    Article  CAS  Google Scholar 

  5. Cheng Y, Wang G, Yan M, Jiang Z (2007) J Solid State Electrochem 11:310–316

    Article  CAS  Google Scholar 

  6. Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) J Power Sources 195:7904–7929

    Article  CAS  Google Scholar 

  7. Wang F-M, Cheng H-M, Wu H-C, Chu S-Y, Cheng C-S, Yang C-R (2009) Electrochim Acta 54:3344–3351

    Article  CAS  Google Scholar 

  8. Park G, Nakamura H, Lee Y, Yoshio M (2009) J Power Sources 189:602–606

    Article  CAS  Google Scholar 

  9. Zheng M-S, Dong Q-F, Cai H-Q, Jin M-G, Lin Z-G, Sun S-G (2005) J Electrochem Soc 152:A2207–A2210

    Article  Google Scholar 

  10. Yamada Y, Iriyama Y, Abe T, Ogumi Z (2009) Langmuir 25:12766–12770

    Article  CAS  Google Scholar 

  11. Kwak G, Park J, Lee J, Kim S, Jung I (2007) J Power Sources 174:484–492

    Article  CAS  Google Scholar 

  12. Menkin S, Golodnitsky D, Peled E (2009) Electrochem Commun 11:1789–1791

    Article  CAS  Google Scholar 

  13. Cho IH, Kim S-S, Shin SC, Choi N-S (2010) Electrochem Solid State Lett 13:A168–A172

    Article  CAS  Google Scholar 

  14. Matsui M, Dokko K, Kanamura K (2008) J Power Sources 177:184–193

    Article  CAS  Google Scholar 

  15. Lee S-B, Pyun S-I (2002) Carbon 40:2333–2339

    Article  CAS  Google Scholar 

  16. Zhang SS, Xu K, Jow TR (2004) J Power Sources 130(1–2):281–285

    Article  CAS  Google Scholar 

  17. Zhang SS, Xu K, Jow TR (2006) Electrochim Acta 51:1636–1640

    Article  CAS  Google Scholar 

  18. He Y-B, Tang Z-Y, Song Q-S, Xie H, Liu Y-G, Xu Q (2008) J Electrochem Soc 155:A481–A487

    Article  CAS  Google Scholar 

  19. Peleda E, Golodnitsky D, Ulusa A, Yufita V (2004) Electrochim Acta 50:391–395

    Article  Google Scholar 

  20. Nobili F, Tossici R, Croce F, Scrosati B, Marassi R (2001) J Power Sources 94:238–241

    Article  CAS  Google Scholar 

  21. Croce F, Nobili F, Deptula A, Lada W, Tossici R, D’Epifanio A, Scrosati B, Marassi R (1999) Electrochem Commun 1:605–608

    Article  CAS  Google Scholar 

  22. Umeda M, Dokko K, Fujita Y, Mohamedi M, Uchida I, Selman JR (2001) Electrochim Acta 47:885–890

    Article  CAS  Google Scholar 

  23. Fey GTK, Yo WH, Chang YC (2002) J Power Sources 105:82–86

    Article  CAS  Google Scholar 

  24. Kang X, Shengshui Z, Richard J (2005) J Power Sources 143:197–202

    Article  Google Scholar 

  25. Huang K-L, Wang Z-X, Liu S-Q (2007) M Chemical Industry. Beijing, pp143–145

  26. Kang X (2004) Chem Rev 104:4303–4417

    Google Scholar 

  27. Ramadass P, Haran B, White R (2002) J Power Sources 112:614–620

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the China 863 Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhuai Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, D., Zhao, H., Wang, J. et al. Effects of constant voltage at low potential on the formation of LiMnO2/graphite lithium ion battery. J Solid State Electrochem 18, 1907–1914 (2014). https://doi.org/10.1007/s10008-014-2431-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2431-1

Keywords

Navigation