Skip to main content

Advertisement

Log in

Dual template method to prepare hierarchical porous carbon nanofibers for high-power supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Hierarchical porous carbon nanofibers serving as electrode materials are prepared through carbonization and hydrofluoric acid treatment of polyacrylonitrile-based electrospinning involving dual templates. The hierarchical porous structures are synergistically tailored by varying template contents in the spinning solution. The carbon nanofibers prepared from the electrospinning of polyacrylonitrile containing 15/15 wt.% polymethylmethacrylate/tetraethyl orthosilicate exhibit the largest specific surface area (699 m2 g−1) and microporous volume (0.196 cm3 g−1). In 6 M KOH electrolyte, a symmetrical supercapacitor equipped with the hierarchical porous carbon nanofibers demonstrates its high-end specific capacitance of 170 F g−1, superior rate capability, and high-power density output up to 14.7 kW kg−1. Cycling evolution indicates capacitance fading is only 5.8 % of initial capacitance at a current density of 1 A g−1 even after 8,000 cycles. The excellent electrochemical performances of the carbon nanofiber are mainly ascribed to the optimized pore size distributions of both micropores and mesopores and the unique hierarchical pore structures possessed by abundant micropores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Miller JR, Simon P (2008) Science 321:651–652

    Article  CAS  Google Scholar 

  2. Zhai YP, Dou YQ, Zhao DY, Fulvio PF, Mayes RT, Dai S (2011) Adv Mater 23:4828–4850

    Article  CAS  Google Scholar 

  3. Raymundo-Piñero E, Leroux F, Béguin F (2006) Adv Mater 18:1877–1882

    Article  Google Scholar 

  4. Rufford T, Hulicova-Jurcakova D, Zhu Z, Lu G (2009) J Phys Chem C 113:19335–19343

    Article  CAS  Google Scholar 

  5. Xiong W, Liu MX, Gan LH, Lv YK, Li Y, Yang L, Xu ZJ, Hao ZX, Liu HL, Chen LW (2011) J Power Sources 196:10461–10464

    Article  CAS  Google Scholar 

  6. Xie XF, Gao L, Sun J, Liu YQ, Kajiura H, Li YM, Noda K (2008) Carbon 46:1145–1151

    Article  CAS  Google Scholar 

  7. Konno H, Ito T, Ushiro M, Fushimi K, Azumi K (2010) J Power Sources 195:1739–1746

    Article  CAS  Google Scholar 

  8. He XJ, Geng YJ, Qiu JH, Zheng MD, Long S, Zhang XY (2010) Carbon 48:1662–1669

    Article  CAS  Google Scholar 

  9. Ramos-Fernández JM, Martínez-Escandell M, Rodríguez-Reinoso F (2008) Carbon 46:365–389

    Article  Google Scholar 

  10. Hu ZH, Srinivasan MP, Ni YM (2001) Carbon 39:877–886

    Article  CAS  Google Scholar 

  11. Lota G, Tyczkowski J, Kapica R, Lota K, Frackowiak E (2010) J Power Sources 195:7535–7539

    Article  CAS  Google Scholar 

  12. Kim C, Yang KS (2003) Appl Phys Lett 83:1216–1218

    Article  CAS  Google Scholar 

  13. Zhang WF, Huang ZH, Guo Z, Li C, Kang FY (2010) Mater Lett 64:1868–1870

    Article  CAS  Google Scholar 

  14. Ra EJ, Raymundo-Piñero E, Lee YH, Béguin F (2009) Carbon 47:2984–2992

    Article  CAS  Google Scholar 

  15. Yue Z, Mangun CL, Economy J (2002) Carbon 40:1181–1191

    Article  CAS  Google Scholar 

  16. Yalcin N, Sevinc V (2000) Carbon 38:1943–1945

    Article  CAS  Google Scholar 

  17. Huidobro A, Pastor AC, Rodríguez-Reinoso F (2001) Carbon 39:389–398

    Article  CAS  Google Scholar 

  18. Yang Z, Xia Y, Mokaya R (2004) Adv Mater 16:727–732

    Article  CAS  Google Scholar 

  19. Lee JW, Han SJ, Hyeon TH (2004) J Mater Chem 14:478–486

    Article  CAS  Google Scholar 

  20. Fuertes AB (2004) Chem Mater 16:449–455

    Article  CAS  Google Scholar 

  21. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) Angew Chem 120:379–382

    Article  Google Scholar 

  22. Yang XQ, Wu DC, Chen XM, Fu RW (2010) J Phys Chem C 114:8581–8586

    Article  CAS  Google Scholar 

  23. Kowalewski T, Tsarevsky NV, Matyjaszewski K (2002) J Am Chem Soc 124:10632–10633

    Article  CAS  Google Scholar 

  24. Tang C, Qi K, Wooley KL, Matyjaszewski K, Kowalewski T (2004) Angew Chem Int Ed 43:2783–2787

    Article  CAS  Google Scholar 

  25. Tang CB, Tracz A, Kruk M, Zhang R, Smilgies DM, Matyjaszewski K, Kowalewski T (2005) J Am Chem Soc 127:6918–6919

    Article  CAS  Google Scholar 

  26. Kruk M, Dufour B, Celer EB, Kowalewski T, Jaroniec M, Matyjaszewski K (2006) Chem Mater 18:1417–1424

    Article  CAS  Google Scholar 

  27. Inagaki M, Yang Y, Kang F (2012) Adv Mater 24:2547–2566

    Article  CAS  Google Scholar 

  28. Greiner A, Wendorff JH (2007) Angew Chem Int Ed 46:5670–5703

    Article  CAS  Google Scholar 

  29. Gao Y, Presser V, Zhang L, Niu JJ, McDonough JK, Pérez CR, Lin HB, Fong H, Gogotsi Y (2012) J Power Sources 201:368–375

    Article  CAS  Google Scholar 

  30. Donnet JB, Bansal RC (1990) Carbon fibers, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  31. Chun I, Reneker DH, Fong H, Fang XY, Deitzel J, Tan NB, Kearns KJ (1999) J Adv Mater 31:36–41

    CAS  Google Scholar 

  32. Lai D, Xia Y (2004) Adv Mater 16:1151–1170

    Article  Google Scholar 

  33. Zussman E, Yarin AL, Bazilevsky AV, Avrahami R, Feld-man M (2006) Adv Mater 18:348–353

    Article  CAS  Google Scholar 

  34. Nataraj SK, Yang KS, Aminabhavi TM (2012) Prog Polym Sci 37:487–513

    Article  CAS  Google Scholar 

  35. Kim BH, Yang KS, Ferraris JP (2012) Electrochim Acta 75:325–331

    Article  CAS  Google Scholar 

  36. Li YY, Li ZS, Shen PK (2013) Adv Mater 25:2474–2480

    Article  CAS  Google Scholar 

  37. Kim C, Jeong YI, Ngoc BTN, Yang KS, Kojima M, Kim YA, Endo M, Lee JW (2007) Small 3:91–95

    Article  CAS  Google Scholar 

  38. Hulicova D, Hosoi K, Kuroda S, Abe H, Oya A (2002) Adv Mater 14:452–455

    Article  CAS  Google Scholar 

  39. Ji LW, Lin Z, Medford AJ, Zhang XW (2009) Carbon 47:3346–3354

    Article  CAS  Google Scholar 

  40. Liu H, Zhu G (2007) J Power Sources 171:1054–1061

    Article  CAS  Google Scholar 

  41. Li Q, Jiang R, Dou Y, Wu Z, Huang T, Feng D, Yang JP, Yu A, Zhao DY (2011) Carbon 49:1248–1257

    Article  CAS  Google Scholar 

  42. Xing W, Huang CC, Zhuo SP, Yuan X, Wang GQ, Hulicova-Jurcakova D, Yan ZF, Lu GQ (2009) Carbon 47:1715–1722

    Article  CAS  Google Scholar 

  43. Li F, Morris M, Chan KY (2011) J Mater Chem 21:8880–8886

    Article  CAS  Google Scholar 

  44. Conway BE (1999) Electrochemical supercapacitors, scientific fundamentals and technological applications. Electrochemical supercapacitors, Kluwer/Plenum, New York

    Book  Google Scholar 

  45. Cheng QL, Xia YM, Pavlinek V, Yan YF, Li CZ, Saha P (2012) J Mater Sci 47:6444–6450

    Article  CAS  Google Scholar 

  46. Kim C, Ngoc BTN, Yang KS, Kojima M, Kim YA, Kim YJ, Endo M, Yang SC (2007) Adv Mater 19:2341–2346

    Article  CAS  Google Scholar 

  47. Xing W, Qiao SZ, Ding RG, Li F, Lu GQ, Yan ZF, Cheng HM (2006) Carbon 44:216–224

    Article  CAS  Google Scholar 

  48. Weng TC, Teng H (2001) J Electrochem Soc 48:A368–A373

    Article  Google Scholar 

  49. Pietrzak R, Jurewicz K, Nowicki P, Babeł K, Wachowska H (2010) Fuel 89:3457–3467

    Article  CAS  Google Scholar 

  50. McGann JP, Zhong MJ, Kim EK, Natesakhawat S, Jaroniec M, Whitacre JF, Matyjaszewski K, Kowalewski T (2012) Macromol Chem Phys 213:1078–1090

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The workers gratefully appreciate the financial supports from the Youth Project of the National Nature Science Foundation of China (grant nos. 51103124 and 51203131) and Hunan province universities innovation platform of Open Fund Project (11 K067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Cao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Cao, Q., Wang, X. et al. Dual template method to prepare hierarchical porous carbon nanofibers for high-power supercapacitors. J Solid State Electrochem 17, 2731–2739 (2013). https://doi.org/10.1007/s10008-013-2166-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2166-4

Keywords

Navigation