Skip to main content
Log in

Simultaneous detection of guanine and adenine in DNA and meat samples using graphitized mesoporous carbon modified electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A graphitized mesoporous carbon modified glassy carbon electrode (GCE/GMC) prepared by drop coating method without any pre-anodization of the underlying GCE or external binder/matrix, has been demonstrated for simultaneous electrochemical oxidation of guanine (G) and adenine (A) at oxidation potentials 0.60 and 0.85 V vs. Ag/AgCl, respectively, in the presence of thymine (T) by differential pulse voltammetric method in pH 7 phosphate buffer solution. Control voltammetric experiments with unmodified GCE, graphite nanopowder and multiwalled carbon nanotube modified electrodes yielded either feeble or with high-background current responses. Interestingly, the GCE/GMC showed highly efficient, stable and well-defined voltammetric signals. Thymine oxidation signal noticed discretely at 1.15 V vs. Ag/AgCl on the GCE/GMC was not influenced for the simultaneous determination of G and A. Constructed DPV calibration graphs were linear in the range of 25–200 and 25–150 μM, respectively, for the G and A. Corresponding detection limit (S/N = 3) values are 0.76 and 0.63 μM. Real sample analyses for the detection of G and A concentrations in calf-thymus DNA (detected [G]/[A] ratio = 0.82), beef brain and beef liver were successfully demonstrated with recovery values ~100 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, New York

    Google Scholar 

  2. Wallace SS (2002) Free Radic Biol Med 33:1–14

    Article  CAS  Google Scholar 

  3. Cadet J, Douki T, Gasparutto D, Ravanat J-L (2003) Mutat Res 531:5–23

    Article  CAS  Google Scholar 

  4. Carver JD, Walker WA (1995) J Nutr Biochem 6:58–72

    Article  CAS  Google Scholar 

  5. Choi HK, Atkinson K, Karlson EW, Willett W, Curhan G (2004) N Engl J Med 350:1093–1103

    Article  CAS  Google Scholar 

  6. Eswara Dutt VVS, Mottola HA (1974) Anal Chem 46:1777–1781

    Article  Google Scholar 

  7. Xu Q, Wang S-F (2005) Microchim Acta 151:47–52

    Article  CAS  Google Scholar 

  8. Kuroda N, Nakashima K, Akiyama S (1993) Anal Chim Acta 278:275–278

    Article  CAS  Google Scholar 

  9. Jin W, Wei H, Zhao X (1997) Electroanalysis 9:770–774

    Article  CAS  Google Scholar 

  10. Xiong X, Ouyang J, Baeyens WRG, Delanghe JR, Shen X, Yang Y (2006) Electrophoresis 27:3243–3253

    Article  CAS  Google Scholar 

  11. Tseng HC, Dadoo C, Zare RN (1994) Anal Biochem 222:55–58

    Article  CAS  Google Scholar 

  12. Li G, Gao J, Zhou X, Shimelis O, Giese RW (2003) J Chromatogr A 1004:47–50

    Article  CAS  Google Scholar 

  13. Wang W, Zhou L, Wang S, Luo Z, Hu Z (2008) Talanta 74:1050–1055

    Article  CAS  Google Scholar 

  14. Ferancová A, Rengaraj S, Kim Y, Labuda J, Sillanpää M (2010) Biosens Bioelectron 26:314–320

    Article  Google Scholar 

  15. Haunschmidt M, Buchberger W, Klampfl CW (2008) J Chromatogr A 1213:88–92

    Article  CAS  Google Scholar 

  16. Chin W, Mons M, Dimicoli I, Piuzzi F, Tardivel B, Elhanine M (2002) Eur Phys J D 20:347–355

    Article  CAS  Google Scholar 

  17. Fan Y, Huang K-J, Niu D-J, Yang C-P, Jing Q-S (2011) Electrochim Acta 56:4685–4690

    Article  CAS  Google Scholar 

  18. Liu T, Zhu X, Cui L, Ju P, Qu X, Ai S (2011) J Electroanal Chem 651:216–221

    Article  CAS  Google Scholar 

  19. Wei Y, Huang Q-A, Li M-G, Huang X-J, Fang B, Wang L (2011) Electrochim Acta 56:8571–8575

    Article  CAS  Google Scholar 

  20. Fang B, Zhang W, Wang G, Liu H, Wei S (2008) Microchim Acta 162:175–180

    Article  CAS  Google Scholar 

  21. Liu H, Wang G, Chen D, Zhang W, Li C, Fang B (2008) Sens Actuator B 128:414–421

    Article  Google Scholar 

  22. Yin H, Zhou Y, Ma Q, Ai S, Ju P, Zhu L, Lu L (2010) Process Biochem 45:1707–1712

    Article  CAS  Google Scholar 

  23. Shen Q, Wang X (2009) J Electroanal Chem 632:149–153

    Article  CAS  Google Scholar 

  24. Tang C, Yogeswaran U, Chen S-M (2009) Anal Chim Acta 636:19–27

    Article  CAS  Google Scholar 

  25. Yogeswaran U, Thiagarajan S, Chen S-M (2007) Carbon 45:2783–2796

    Article  CAS  Google Scholar 

  26. Cui X, Cui F, He Q, Guo L, Ruan M, Shi J (2010) Fuel 89:372–377

    Article  CAS  Google Scholar 

  27. Xie H, Wu Z, Overbury SH, Liang C, Schwartz V (2009) J Catal 267:158–166

    Article  CAS  Google Scholar 

  28. Thangaraj R, Kumar AS (2012) Anal Methods 4:2162–2171

    Article  CAS  Google Scholar 

  29. Barathi P, Kumar AS, Karthick MR (2011) Int J Electrochem 2011:1–12

    Article  Google Scholar 

  30. Thangaraj R, Manjula N, Kumar AS (2012) Anal Methods 4:2922–2928

    Article  CAS  Google Scholar 

  31. Wu KB, Fei JJ, Bai W, Hu SS (2003) Anal Bioanal Chem 376:205–209

    CAS  Google Scholar 

  32. Finot MO, Braybrook GD, McDermott MT (1999) J Electroanal Chem 466:234–241

    Article  CAS  Google Scholar 

  33. Wang P, Wu H, Dai Z, Zou X (2011) Biosens Bioelectron 26:3339–3345

    Article  CAS  Google Scholar 

  34. Feng L-J, Zhang X-H, Liu P, Xiong H-Y, Wang S-F (2011) Anal Biochem 49:71–75

    Article  Google Scholar 

  35. Zen J-M, Chang M-R, Ilangovan G (1999) Analyst 124:679–684

    Article  CAS  Google Scholar 

  36. Wang H-S, Ju H-X, Chen H-Y (2002) Anal Chim Acta 461:243–250

    Article  CAS  Google Scholar 

  37. Huang K-J, Niu D-J, Sun J-Y, Han C-H, Wu Z-W, Li Y-L, Xiong X-Q (2011) Colloids Surf B 82:543–549

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful for the financial support from the Department of Science and Technology (DST), Technology System Development Program, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annamalai Senthil Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10008_2012_1895_MOESM1_ESM.doc

Supplementary data available for this article can be found in the online version. Individual and simultaneous DPV response at GCE/GNP for adenine and guanine (Fig. S1). Comparative simultaneous CV response of G, A and T at GCE/GMC and GCE/MWCNT in pH 7 PB solution (Fig. S2). (DOC 766 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thangaraj, R., Senthil Kumar, A. Simultaneous detection of guanine and adenine in DNA and meat samples using graphitized mesoporous carbon modified electrode. J Solid State Electrochem 17, 583–590 (2013). https://doi.org/10.1007/s10008-012-1895-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1895-0

Keywords

Navigation