Skip to main content
Log in

Tetragonal to monoclinic phase transition observed during Zr anodisation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Plasma electrolytic oxidation (PEO) is a coating procedure that utilises anodic oxidation in aqueous electrolytes above the dielectric breakdown voltage to produce oxide coatings that have specific properties. These conditions facilitate oxide formation under localised high temperatures and pressures that originate from short-lived microdischarges at sites over the metal surface and have fast oxide volume expansion. Anodic ZrO2 films were prepared by subjecting metallic zirconium to PEO in acid solutions (H2C2O4 and H3PO4) using a galvanostatic DC regime. The ZrO2 microstructure was investigated in films that were prepared at different charge densities. During the anodic breakdown, an important change in the amplitude of the voltage oscillations at a specific charge density was observed (i.e., the transition charge density (Q T)). We verified that this transition charge is a monotonic function of both the current density and temperature applied during the anodisation, which indicated that Q T is an intrinsic response of this system. The oxide morphology and microstructure were characterised using SEM and X-ray diffraction experiments (XRD) techniques. X-ray diffraction analysis revealed that the change in voltage oscillation was correlated with oxide microstructure changes during the breakdown process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vermilyea DA (1955) The crystallization of anodic tantalum oxide films in the presence of a strong electric field. J Electrochem Soc 102(5):207–214

    Article  CAS  Google Scholar 

  2. Diggle JW, Downie TC, Goulding CW (1969) Anodic oxide films on aluminum. Chem Rev 69(3):365–382

    Article  CAS  Google Scholar 

  3. Parkhutik VP, Albella JM, Martinez-Duart JM (1992) Eletric breakdown in anodic oxide films. In: Conway B, White J, Bockris JOM (eds) Modern aspects of electrochemistry, vol 23. Plenum, New York, p 391

    Google Scholar 

  4. Lohrengel MM (1993) Thin anodic oxide layers on aluminum and other valve metals—high field regime. Mater Sci Eng, R 11(6):243–294

    Article  Google Scholar 

  5. Schultze JW, Lohrengel MM, Ross D (1983) Nucleation and growth of anodic oxide films. Electrochim Acta 28(7):973–984

    Article  CAS  Google Scholar 

  6. Masuda H, Fukuda K (1995) Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina. Science 268(5216):1466–1468

    Article  CAS  Google Scholar 

  7. Masuda H, Yamada H, Satoh M, Asoh H, Nakao M, Tamamura T (1997) Highly ordered nanochannel-array architecture in anodic alumina. Appl Phys Lett 71(19):2770–2772

    Article  CAS  Google Scholar 

  8. Masuda H, Asoh H, Watanabe M, Nishio K, Nakao M, Tamamura T (2001) Square and triangular nanohole array architectures in anodic alumina. Adv Mater 13(3):189–192

    Article  CAS  Google Scholar 

  9. Beranek R, Hildebrand H, Schmuki P (2003) Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem Solid-State Lett 6(3):B12–B14

    Article  CAS  Google Scholar 

  10. Tsuchiya H, Schmuki P (2004) Thick self-organized porous zirconium oxide formed in H2SO4/NH4F electrolytes. Electrochem Commun 6(11):1131–1134

    Article  CAS  Google Scholar 

  11. Tsuchiya H, Macak JM, Ghicov A, Taveira L, Schmuki P (2005) Self-organized porous TiO2 and ZrO2 produced by anodization. Corros Sci 47(12):3324–3335

    Article  CAS  Google Scholar 

  12. Bensadon EO, Nascente PAP, Olivi P, Bulhoes LOS, Pereira EC (1999) Cubic stabilized zirconium oxide anodic films prepared at room temperature. Chem Mater 11(2):277–280

    Article  CAS  Google Scholar 

  13. Frauchiger VM, Schlottig F, Gasser B, Textor M (2004) Anodic plasma-chemical treatment of CP titanium surfaces for biomedical applications. Biomaterials 25(4):593–606

    Article  CAS  Google Scholar 

  14. Trivinho-Strixino F, Guimaraes FEG, Pereira EC (2008) Luminescence in anodic ZrO2 doped with Eu(III)ions. Mol Cryst Liq Cryst 485:766–775

    Article  CAS  Google Scholar 

  15. Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ (1999) Plasma electrolysis for surface engineering. Surf Coat Technol 122(2–3):73–93

    Article  CAS  Google Scholar 

  16. Pauporte T, Finne J, Kahn-Harari A, Lincot D (2005) Growth by plasma electrolysis of zirconium oxide films in the micrometer range. Surf Coat Technol 199(2–3):213–219

    Article  CAS  Google Scholar 

  17. Yerokhin L, Snizhko LO, Gurevina NL, Leyland A, Pilkington A, Matthews A (2003) Discharge characterization in plasma electrolytic oxidation of aluminium. J Phys D-Appl Phys 36(17):2110–2120

    Article  CAS  Google Scholar 

  18. Leach JSL, Pearson BR (1984) The conditions for incorporation of electrolyte ions into anodic oxides. Electrochim Acta 29(9):1263–1270

    Article  CAS  Google Scholar 

  19. Montero I, Albella JM, Martinezduart JM (1985) Influence of electrolyte concentration on the anodization and breakdown characteristics of Ta2O5 films. J Electrochem Soc 132(4):814–818

    Article  CAS  Google Scholar 

  20. Li Y, Shimada H, Sakairi M, Shigyo K, Takahashi H, Seo M (1997) Formation and breakdown of anodic oxide films on aluminum in boric acid borate solutions. J Electrochem Soc 144(3):866–876

    Article  CAS  Google Scholar 

  21. Dyer CK, Leach JSL (1978) Breakdown and efficiency of anodic oxide—growth on titanium. J Electrochem Soc 125(7):1032–1038

    Article  CAS  Google Scholar 

  22. Diquarto F, Piazza S, Sunseri C (1984) Breakdown phenomena during the growth of anodic oxide-films on zirconium metal—influence of experimental parameters on electrical and mechanical breakdown. J Electrochem Soc 131(12):2901–2906

    Article  CAS  Google Scholar 

  23. Khalil N, Bowen A, Leach JSL (1988) The anodic-oxidation of valve metals.2. The influence of the anodizing conditions on the transport processes during the anodic-oxidation of zirconium. Electrochim Acta 33(12):1721–1727

    Article  CAS  Google Scholar 

  24. Freitas M, Bulhoes LOS (1997) Breakdown and crystallization processes in niobium oxide films in oxalic acid solution. J Appl Electrochem 27(5):612–615

    Article  CAS  Google Scholar 

  25. Chiu RL, Chang PH, Tung CH (1995) The effect of anodizing temperature on anodic oxide formed on pure Al thin-films. Thin Solid Films 260(1):47–53

    Article  CAS  Google Scholar 

  26. Ikonopisov S (1977) Theory of electrical breakdown during formation of barrier anodic films. Electrochim Acta 22(10):1077–1082

    Article  CAS  Google Scholar 

  27. Albella JM, Montero I, Martinezduart JM (1984) Electron injection and avalanche during the anodic-oxidation of tantalum. J Electrochem Soc 131(5):1101–1104

    Article  CAS  Google Scholar 

  28. Albella JM, Montero I, Martinezduart JM (1987) A theory of avalanche breakdown during anodic-oxidation. Electrochim Acta 32(2):255–258

    Article  CAS  Google Scholar 

  29. Diquarto F, Piazza S, Sunseri C (1986) A phenomenological approach to the mechanical breakdown of anodic oxide-films on zirconium. Corros Sci 26(3):213–221

    Article  CAS  Google Scholar 

  30. Diquarto F, Piazza S, Sunseri C (1988) Electrical and mechanical breakdown of anodic films on tungsten in aqueous-electrolytes. J Electroanal Chem 248(1):99–115

    Article  CAS  Google Scholar 

  31. Diquarto F, Piazza S, Sunseri C (1988) Electrical breakdown and pitting in anodic films on tungsten in halogen ion-containing solutions. J Electroanal Chem 248(1):117–129

    Article  CAS  Google Scholar 

  32. Bulygin EV, Sverdlin IA (1994) Pitting during initiation of spark electric breakdown in the process of aluminum anodization in nonaqueous solutions of trialkylammonium alkylcarboxylates. Russ J Electrochem 30(4):513–520

    Google Scholar 

  33. Gupta P, Tenhundfeld G, Daigle EO, Schilling PJ (2005) Synthesis and characterization of hard metal coatings by electro-plasma technology. Surf Coat Technol 200(5–6):1587–1594

    Article  CAS  Google Scholar 

  34. Gupta P, Tenhundfeld G, Daigle EO, Ryabkov D (2007) Electrolytic plasma technology: science and engineering—an overview. Surf Coat Technol 201(21):8746–8760

    Article  CAS  Google Scholar 

  35. Ikonopisov S, Girginov A, Machkova M (1979) Electrical breaking down of barrier anodic films during their formation. Electrochim Acta 24(4):451–456

    Article  CAS  Google Scholar 

  36. Diggle JW, Downie TC, Goulding CW (1968) Effect of anodic oxide films on polarization characteristics of Al. Corros Sci 8(12):907–911

    Article  CAS  Google Scholar 

  37. Van Overmeere Q, Proost J (2010) Stress-induced breakdown during galvanostatic anodising of zirconium. Electrochim Acta 55(15):4653–4660

    Article  Google Scholar 

  38. Proost J, Vanhumbeeck JF, Van Overmeere Q (2009) Instability of anodically formed TiO2 layers (revisited). Electrochim Acta 55(2):350–357

    Article  CAS  Google Scholar 

  39. Habazaki H, Shimizu K, Nagata S, Asami K, Takayama K, Oda Y, Skeldon P, Thompson GE (2005) Inter-relationship between structure and dielectric properties of crystalline anodic zirconia. Thin Solid Films 479(1–2):144–151

    Article  CAS  Google Scholar 

  40. Arora MR, Kelly R (1977) Structure and stoichiometry of anodic films on V, Nb, Ta, Mo and W. J Mater Sci 12(8):1673–1684

    Article  CAS  Google Scholar 

  41. Vermilyea DA (1957) Nucleation of crystalline Ta2O5 during field crystallization. J Electrochem Soc 104(9):542–546

    Article  CAS  Google Scholar 

  42. Draper PHG, Harvey J (1963) Structure of anodic films.1.An electron diffraction examination of products of anodic oxidation on tantalum, niobium and zirconium. Acta Metall 11(8):873–875

    Article  CAS  Google Scholar 

  43. Hornkjol S, Hurlen T (1990) Anodic growth of passive films on zirconium and hafnium. Electrochim Acta 35(11–12):1897–1900

    Article  Google Scholar 

  44. Michaelis A, Schweinsberg M (1998) An anisotropy microellipsometry (AME) study of anodic film formation on Ti and Zr single grains. Thin Solid Films 313:756–763

    Article  Google Scholar 

  45. Neufeld P, Akbar M, Ashdown R, Nagpaul NK (1972) Crystallization of anodic Al2O3. Electrochim Acta 17(9):1543

    Article  CAS  Google Scholar 

  46. Leach JSL, Pearson BR (1988) Crystallization in anodic oxide-films. Corros Sci 28(1):43–56

    Article  CAS  Google Scholar 

  47. Adams GB, Vanrysselberghe P (1955) Anodic polarization of zirconium at low potentials—formation rates, formation field, electrolytic parameters, and film thicknesses of very thin oxide films. J Electrochem Soc 102(9):502–511

    Article  CAS  Google Scholar 

  48. Archibald LC, Leach JSL (1977) Anodic-oxidation of zirconium.1. Growth stresses in anodic ZrO2 films. Electrochim Acta 22(1):15–20

    Article  CAS  Google Scholar 

  49. Archibald LC, Leach JSL (1977) Anodic-oxidation of zirconium.2. Growth and morphology of anodic ZrO2 films. Electrochim Acta 22(1):21–25

    Article  CAS  Google Scholar 

  50. Vanhumbeeck JF, Proost J (2008) On the contribution of electrostriction to charge-induced stresses in anodic oxide films. Electrochim Acta 53(21):6165–6172

    Article  CAS  Google Scholar 

  51. Vanhumbeeck JF, Proost J (2008) On the relation between growth instabilities and internal stress evolution during galvanostatic Ti thin film anodization. J Electrochem Soc 155(10):C506–C514

    Article  CAS  Google Scholar 

  52. Grain CF, Garvie RC (1965) Mechanism of monoclinic—tetragonal transformation of zirconium dioxide. Am Ceram Soc Bull 44(4):315–320

    Google Scholar 

  53. Garvie RC (1965) Occurrence of metastable tetragonal zirconia as a crystallite size effect. J Phys Chem 69(4):1238–1243

    Article  CAS  Google Scholar 

  54. Alper AM (1970) High temperature oxides. Part II: oxides of rare earths, titanium, zirconium, hafnium, niobium and tantalum. In: Margrave JL (ed) Refractory materials: a series of monographs, vol 5-II. vol 5/6. Academic, New York, p 276

    Google Scholar 

  55. Salas P, De la Rosa-Cruz E, Diaz-Torres LA, Castano VM, Melendrez R, Barboza-Flores M (2003) Monoclinic ZrO2 as a broad spectral response thermoluminescence UV dosemeter. Radiat Meas 37(2):187–190

    Article  CAS  Google Scholar 

  56. Ciosek J, Paszkowicz W, Pankowski P, Firak J, Stanislawek U, Patron Z (2003) Modification of zirconium oxide film microstructure during post-deposition annealing. Vacuum 72(2):135–141

    Article  CAS  Google Scholar 

  57. Lin CK, Zhang CM, Lin J (2007) Phase transformation and photoluminescence properties of nanocrystalline ZrO2 powders prepared via the Pechini-type sol–gel process. J Phys Chem C 111(8):3300–3307

    Article  CAS  Google Scholar 

  58. Bail AL, Duroy H, Fourquet JL (1988) Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater Res Bull 23(3):447–452

    Article  Google Scholar 

  59. Larson AC, Dreele RBV (2000) GSAS (general structure analysis system). Used version: August 1997 edn., Los Alamos National Laboratory Report LAUR 86-748

  60. Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Article  CAS  Google Scholar 

  61. Morrison SR (1980) Electrochemistry at semiconductor and oxidized metals electrodes. Plenum, New York

    Book  Google Scholar 

  62. Dewit HJ, Wijenberg C, Crevecoeur C (1976) Dielectric-breakdown of anodic aluminum-oxide. J Electrochem Soc 123(10):1479–1486

    Article  CAS  Google Scholar 

  63. Matykina E, Doucet G, Monfort E, Berkani A, Skeldon P, Thompson GE (2006) Destruction of coating material during spark anodizing of titanium. Electrochim Acta 51(22):4709–4715

    Article  CAS  Google Scholar 

  64. Matykina E, Berkani A, Skeldon P, Thompson GE (2007) Real-time imaging of coating growth during plasma electrolytic oxidation of titanium. Electrochim Acta 53(4):1987–1994

    Article  CAS  Google Scholar 

  65. Hussein RO, Nie X, Northwood DO, Yerokhin A, Matthews A (2010) Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process. J Phys D-Appl Phys 43(10):1–13

    Article  Google Scholar 

  66. Leach JSL, Pearson BR (1984) The effect of foreign ions upon the electrical characteristics of anodic ZrO2 films. Electrochim Acta 29(9):1271–1282

    Article  CAS  Google Scholar 

  67. Bradhurs DH, Leach JSL (1966) Mechanical properties of thin anodic films on aluminum. J Electrochem Soc 113(12):1245–1255

    Article  Google Scholar 

  68. Davies JA, Domeij B, Pringle JPS, Brown F (1965) The migration of metal and oxygen during anodic film formation. J Electrochem Soc 112:675–680

    Article  CAS  Google Scholar 

  69. Pringle JPS (1980) The anodic-oxidation of superimposed metallic layers—theory. Electrochim Acta 25(11):1423–1437

    Article  CAS  Google Scholar 

  70. Parkhutik VP, Makushok YE, Kudryavtsev VI, Sokol VA, Khodan AN (1987) X-ray photoelectron study of the formation of anodic oxide-films on aluminum in nitric-acid. Soviet Electrochemistry 23(11):1439–1444

    Google Scholar 

  71. Parkhutik V, Gomez FC, Tarazona LM, Esteve RF (2000) Oscillatory kinetics of anodic oxidation of silicon—influence of the crystallographic orientation. Microelectron Reliab 40(4–5):795–798

    Google Scholar 

  72. Parkhutik V, Matveeva E, Perez R, Alamo J, Beltran D (2000) Mechanism of large oscillations of anodic potential during anodization of silicon in H3PO4/HF solutions. Mater Sci Eng B-Solid State Mater Adv Technol 69:553–558

    Google Scholar 

  73. Parkhutik V (2001) Silicon anodic oxides grown in the oscillatory anodisation regime—kinetics of growth, composition and electrical properties. Solid-State Electron 45(8):1451–1463

    Article  CAS  Google Scholar 

  74. Parkhutik V (2002) Chaos-order transitions at corroding silicon surface. Mater Sci Eng B-Solid State Mater Adv Technol 88(2–3):269–276

    Google Scholar 

  75. Parkhutik VP (2006) Oscillations of open-circuit potential during immersion plating of silicon in CuSO4/HF solutions. Russ J Electrochem 42(5):512–522

    Article  CAS  Google Scholar 

  76. Shimizu K, Kobayashi K, Skeldon P, Thompson GE, Wood GC (1997) Anodic oxidation of zirconium covered with a thin layer of aluminium. Thin Solid Films 295(1–2):156–161

    Article  CAS  Google Scholar 

  77. Garvie RC (1978) Stabilization of tetragonal structure in zirconia microcrystals. J Phys Chem 82(2):218–224

    Article  CAS  Google Scholar 

  78. Shukla S, Seal S (2005) Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia. Int Mater Rev 50(1):45–64

    Article  CAS  Google Scholar 

  79. Trivinho-Strixino F, Guimaraes FEG, Pereira EC (2008) Zirconium oxide anodic films: optical and structural properties. Chem Phys Lett 461(1–3):82–86

    Article  CAS  Google Scholar 

  80. Garvie RC, Goss MF (1986) Intrinsic size dependence of the phase-transformation temperature in zirconia microcrystals. J Mater Sci 21(4):1253–1257

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Brazilian research funding agencies FAPESP and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto C. Pereira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trivinho-Strixino, F., da Silva, D.X., Paiva-Santos, C.O. et al. Tetragonal to monoclinic phase transition observed during Zr anodisation. J Solid State Electrochem 17, 191–199 (2013). https://doi.org/10.1007/s10008-012-1883-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1883-4

Keywords

Navigation